×

A four-point integration scheme with quadratic exactness for three-dimensional element-free Galerkin method based on variationally consistent formulation. (English) Zbl 1423.74877

Summary: The formulation of three-dimensional element-free Galerkin (EFG) method based on the Hu-Washizu three-field variational principle is described. The orthogonality condition between stress and strain difference is satisfied by correcting the derivatives of the nodal shape functions. This leads to a variationally consistent formulation which has a similar form as the formulation of standard Galerkin weak form. Based on this formulation, an integration scheme which employs only four cubature points in each background tetrahedral element (cell) is rationally developed for three-dimensional EFG with quadratic approximation. The consistency of the corrected nodal derivatives and the satisfaction of patch test conditions for the developed integration scheme are theoretically proved. Extension of the proposed method to small strain elastoplasticity is also presented. The proposed method can exactly pass quadratic patch test, that is, quadratic exactness is achieved, and thus it is named as quadratically consistent 4-point (QC4) integration method. In contrast, EFG with standard tetrahedral cubature and the existing linearly consistent 1-point (LC1) integration fail to exactly pass quadratic patch test. Numerical results of elastic examples demonstrate the superiority of the proposed method in accuracy, convergence, efficiency and stability. The capability of the proposed QC4 scheme in solving elastoplastic problems is also demonstrated by numerical examples.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74B05 Classical linear elasticity
Full Text: DOI

References:

[1] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids, 20, 1081-1106, (1995) · Zbl 0881.76072
[2] Duarte, C. A.; Oden, J. T., An h-p adaptive method using clouds, Comput. Methods Appl. Mech. Engrg., 139, 237-262, (1996) · Zbl 0918.73328
[3] Liu, G. R.; Gu, Y. T., A point interpolation method for two-dimensional solids, Internat. J. Numer. Methods Engrg., 50, 937-951, (2001) · Zbl 1050.74057
[4] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Internat. J. Numer. Methods Engrg., 37, 229-256, (1994) · Zbl 0796.73077
[5] Le, C. V.; Askes, H.; Gilbert, M., Adaptive element-free Galerkin method applied to the limit analysis of plates, Comput. Methods Appl. Mech. Engrg., 199, 2487-2496, (2010) · Zbl 1231.74485
[6] Belytschko, T.; Organ, D.; Gerlach, C., Element-free Galerkin methods for dynamic fracture in concrete, Comput. Methods Appl. Mech. Engrg., 187, 385-399, (2010) · Zbl 0962.74077
[7] Metsis, P.; Papadrakakis, M., Overlapping and non-overlapping domain decomposition methods for large-scale meshless EFG simulations, Comput. Methods Appl. Mech. Engrg., 229-232, 128-141, (2012) · Zbl 1253.74110
[8] Zhu, T.; Atluri, S. N., A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Computat. Mech., 21, 211-222, (1998) · Zbl 0947.74080
[9] Fernández-Méndez, S.; Huerta, A., Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Engrg., 193, 1257-1275, (2004) · Zbl 1060.74665
[10] Krongauz, Y.; Belytschko, T., Enforcement of essential boundary conditions in meshless approximations using finite elements, Comput. Methods Appl. Mech. Engrg., 131, 133-145, (1996) · Zbl 0881.65098
[11] Duan, Q. L.; Li, X. K.; Zhang, H. W.; Belytschko, T., Second-order accurate derivatives and integration schemes for meshfree methods, Internat. J. Numer. Methods Engrg., 92, 399-424, (2012) · Zbl 1352.65390
[12] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput. Methods Appl. Mech. Engrg., 139, 49-74, (1996) · Zbl 0918.73329
[13] Nagashima, T., Node-by-node meshless approach and its applications to structural analyses, Internat. J. Numer. Methods Engrg., 46, 341-385, (1999) · Zbl 0965.74079
[14] Duan, Q. L.; Belytschko, T., Gradient and dilatational stabilizations for stress-point integration in the element-free Galerkin method, Internat. J. Numer. Methods Engrg., 77, 776-798, (2009) · Zbl 1156.74393
[15] Rabczuk, T.; Belytschko, T.; Xiao, S. P., Stable particle methods based on Lagrangian kernels, Comput. Methods Appl. Mech. Engrg., 193, 1035-1063, (2004) · Zbl 1060.74672
[16] Dyka, C. T.; Randles, P. W.; Ingel, R. P., Stress points for tension instability in SPH, Internat. J. Numer. Methods Engrg., 40, 2325-2341, (1997) · Zbl 0890.73077
[17] Fries, T. P.; Belytschko, T., Convergence and stabilization of stress-point integration in mesh-free and particle methods, Internat. J. Numer. Methods Engrg., 74, 1067-1087, (2008) · Zbl 1158.74525
[18] Bonet, J.; Kulasegaram, S., Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations, Internat. J. Numer. Methods Engrg., 47, 1189-1214, (2000) · Zbl 0964.76071
[19] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Internat. J. Numer. Methods Engrg., 50, 435-466, (2001) · Zbl 1011.74081
[20] Sukumar, N., Quadratic maximum-entropy serendipity shape functions for arbitrary planar polygons, Comput. Methods Appl. Mech. Engrg., 263, 27-41, (2013) · Zbl 1286.65168
[21] Belytschko, T.; Krysl, P.; Krongauz, Y., A three-dimensional explicit element-free Galerkin method, Internat. J. Numer. Methods Fluids, 24, 1253-1270, (1997) · Zbl 0881.76048
[22] Sukumar, N.; Moran, B.; Black, T.; Belytschko, T., An element-free Galerkin method for three-dimensional fracture mechanics, Computat. Mech., 20, 170-175, (1997) · Zbl 0888.73066
[23] Krysl, P.; Belytschko, T., The element free Galerkin method for dynamic propagation of arbitrary 3D cracks, Internat. J. Numer. Methods Engrg., 44, 6, 767-800, (1999) · Zbl 0953.74078
[24] Rabczuk, T.; Bordas, S.; Zi, G., A three-dimensional meshfree method for static and dynamic multiple crack nucleation/propagation with crack path continuity, Computational Mechanics, 40, 3, 473-495, (2007) · Zbl 1161.74054
[25] Bordas, S.; Rabczuk, T.; Zi, G., Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment, Eng. Fract. Mech., 75, 5, 943-960, (2008)
[26] Hu, Y.; Yang, Z., An element-free Galerkin method for 3D crack propagation simulation under complicated stress conditions, Internat. J. Numer. Methods Engrg., 91, 1251-1263, (2012)
[27] Zhuang, X.; Augarde, C. E.; Mathisen, K. M., Fracture modeling using meshless methods and level sets in 3D: framework and modeling, Internat. J. Numer. Methods Engrg., 92, 969-998, (2012) · Zbl 1352.74312
[28] Barry, W.; Saigal, S., A three-dimensional element-free Galerkin elastic and elastoplastic formulation, Internat. J. Numer. Methods Engrg., 46, 671-693, (1999) · Zbl 0981.74077
[29] Puso, M. A.; Chen, J. S.; Zywicz, E.; Elmer, W., Meshfree and finite element nodal integration methods, Internat. J. Numer. Methods Engrg., 74, 416-446, (2008) · Zbl 1159.74456
[30] Fish, J.; Belytschko, T., Elements with embedded localization zones for large deformation problems, Comput. Struct., 30, 247-256, (1988) · Zbl 0667.73033
[31] Simo, J. C.; Hughes, T. R., Computational inelasticity, (1998), Springer · Zbl 0934.74003
[32] Simo, J. C.; Taylor, R. L., Consistent tangent operators for rate-independent elastoplasticity, Comput. Methods Appl. Mech. Engrg., 48, 101-118, (1985) · Zbl 0535.73025
[33] Simo, J. C.; Taylor, R. L., A return mapping algorithm for plane stress elastoplasticity, Internat. J. Numer. Methods Engrg., 22, 649-670, (1986) · Zbl 0585.73059
[34] Xing, Y. F.; Qian, L. X., Consistent tangent stiffness method and its application to three-dimensional elastoplastic finite element analysis, Acta Mech. Sin., 26, 3, 320-332, (1994), (in Chinese)
[35] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, 3-47, (1996) · Zbl 0891.73075
[36] Huerta, A.; Belytschko, T.; Fernandez-Mendez, S.; Rabczuk, T., Meshfree methods, (Stein, Erwin; Borst, Rene de; Hughes., Thomas J. R., Encyclopedia of Computational Mechanics, Fundamentals, vol. 1, (2004), John Wiley & Sons, Ltd) · Zbl 1190.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.