×

A classification of Lagrangian planes in holomorphic symplectic varieties. (English) Zbl 1401.14178

Let \(X\) be a smooth projective symplectic variety. \(X\) has a natural quadratic form \((\cdot,\cdot )\) on \(H^2(X,\mathbb{Z})\) called the Beauville-Bogomolov form. This form induces an embedding \(H^2(X,\mathbb{Z}) \subset H_2(X,\mathbb{Z})\) and subsequently the Beauville-Bogomolov form extends to a rational form \((\cdot,\cdot )\) in \(H_2(X,\mathbb{Z})\).
In particular a \(K3\) surface is symplectic and the Beauville-Bogomolov form is the intersection pairing. It is well known that much of the geometry of a \(K3\) surface is encoded in the intersection pairing on the Neron Severi group \(\mathrm{NS}(X)\) of \(X\).
A smooth symplectic variety \(X\) is said to be of \(K3\) type if it is deformation equivalent to the Hilbert scheme of \(n\) points of a \(K3\) surface.
The objective of this paper is to obtain results about the geometry of a smooth projective symplectic variety of \(K3\) type from the structure of its Neron Severi group. The main result is the following. Suppose that \(X\) is a smooth projective symplectic variety of \(K3\) type and \(R \in H_2(X,\mathbb{Z})\) generates an extremal ray of the Mori cone \(\bar{NE}(X)\) of \(X\). Then \(R\) corresponds to a line in a Lagrangian plane in \(X\) if and only if \((R,R)=-(n+3)/2\).

MSC:

14J40 \(n\)-folds (\(n>4\))
14E30 Minimal model program (Mori theory, extremal rays)
14J28 \(K3\) surfaces and Enriques surfaces

References:

[1] D.Arcara and A.Bertram, Bridgeland-stable moduli spaces for K-trivial surfaces, J. Eur. Math. Soc. (JEMS)15(1) (2013), 1-38. With an appendix by Max Lieblich.10.4171/JEMS/354 · Zbl 1259.14014 · doi:10.4171/JEMS/354
[2] C.Bartocci, U.Bruzzo and D.Hernández Ruipérez, Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics, Progress in Mathematics, vol. 276 (Birkhäuser Boston Inc., Boston, MA, 2009).10.1007/b11801 · Zbl 1186.14001 · doi:10.1007/b11801
[3] A.Bayer, B.Hassett and Y.Tschinkel, Mori cones of holomorphic symplectic varieties of K3 type, 2013, arXiv:1307.2291. · Zbl 1375.14124
[4] B.Bakker and A.Jorza, Lagrangian 4-planes in holomorphic symplectic varieties of K3^[4] -type, Cent. Eur. J. Math.12(7) (2014), 952-975. · Zbl 1307.14014
[5] A.Bayer and E.Macrì, MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, Invent. Math.198(3) (2014), 505-590.10.1007/s00222-014-0501-8 · Zbl 1308.14011 · doi:10.1007/s00222-014-0501-8
[6] A.Bayer and E.Macrì, Projectivity and birational geometry of Bridgeland moduli spaces, J. Amer. Math. Soc.27(3) (2014), 707-752.10.1090/S0894-0347-2014-00790-6 · Zbl 1314.14020 · doi:10.1090/S0894-0347-2014-00790-6
[7] T.Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2)166(2) (2007), 317-345.10.4007/annals.2007.166.317 · Zbl 1137.18008 · doi:10.4007/annals.2007.166.317
[8] T.Bridgeland, Stability conditions on K3 surfaces, Duke Math. J.141(2) (2008), 241-291.10.1215/S0012-7094-08-14122-5 · Zbl 1138.14022 · doi:10.1215/S0012-7094-08-14122-5
[9] K.Cho, Y.Miyaoka and N. I.Shepherd-Barron, Characterizations of projective space and applications to complex symplectic manifolds, in Higher Dimensional Birational Geometry (Kyoto, 1997), Adv. Stud. Pure Math., Volume 35, pp. 1-88 (Math. Soc. Japan, Tokyo, 2002). · Zbl 1063.14065
[10] M.Eichler, Quadratische Formen und orthogonale Gruppen (Springer, Berlin, 1974). Zweite Auflage, Die Grundlehren der mathematischen Wissenschaften, Band 63.10.1007/978-3-642-80764-0 · Zbl 0277.10017 · doi:10.1007/978-3-642-80764-0
[11] V.Gritsenko, K.Hulek and G. K.Sankaran, Moduli spaces of irreducible symplectic manifolds, Compos. Math.146(2) (2010), 404-434.10.1112/S0010437X0900445X · Zbl 1230.14051 · doi:10.1112/S0010437X0900445X
[12] D.Harvey, B.Hassett and Y.Tschinkel, Characterizing projective spaces on deformations of Hilbert schemes of K3 surfaces, Comm. Pure Appl. Math.65(2) (2012), 264-286.10.1002/cpa.20384 · Zbl 1235.14037 · doi:10.1002/cpa.20384
[13] D.Huybrechts and P.Stellari, Equivalences of twisted K3 surfaces, Math. Ann.332(4) (2005), 901-936.10.1007/s00208-005-0662-2 · Zbl 1092.14047 · doi:10.1007/s00208-005-0662-2
[14] B.Hassett and Y.Tschinkel, Rational curves on holomorphic symplectic fourfolds, Geom. Funct. Anal.11(6) (2001), 1201-1228.10.1007/s00039-001-8229-1 · Zbl 1081.14515 · doi:10.1007/s00039-001-8229-1
[15] D.Huybrechts and R. P.Thomas, ℙ-objects and autoequivalences of derived categories, Math. Res. Lett.13(1) (2006), 87-98.10.4310/MRL.2006.v13.n1.a7 · Zbl 1094.14012 · doi:10.4310/MRL.2006.v13.n1.a7
[16] B.Hassett and Y.Tschinkel, Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal.19(4) (2009), 1065-1080.10.1007/s00039-009-0022-6 · Zbl 1183.14058 · doi:10.1007/s00039-009-0022-6
[17] B.Hassett and Y.Tschinkel, Intersection numbers of extremal rays on holomorphic symplectic varieties, Asian J. Math.14(3) (2010), 303-322.10.4310/AJM.2010.v14.n3.a2 · Zbl 1216.14012 · doi:10.4310/AJM.2010.v14.n3.a2
[18] B.Hassett and Y.Tschinkel, Hodge theory and Lagrangian planes on generalized Kummer fourfolds, Mosc. Math. J.13(1) (2013), 33-56, 189. · Zbl 1296.14008
[19] M.Inaba, Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, Kyoto J. Math.42(2) (2002), 317-329.10.1215/kjm/1250283873 · Zbl 1063.14013 · doi:10.1215/kjm/1250283873
[20] M.Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom.15(1) (2006), 175-206.10.1090/S1056-3911-05-00418-2 · Zbl 1085.14015 · doi:10.1090/S1056-3911-05-00418-2
[21] E.Markman, Brill-Noether duality for moduli spaces of sheaves on K3 surfaces, J. Algebraic Geom.10(4) (2001), 623-694. · Zbl 1074.14525
[22] E.Markman, A survey of Torelli and monodromy results for holomorphic-symplectic varieties, in Complex and Differential Geometry, Springer Proceedings in Mathematics, Volume 8, pp. 257-322 (Springer, Heidelberg, 2011).10.1007/978-3-642-20300-8_15 · Zbl 1229.14009 · doi:10.1007/978-3-642-20300-8_15
[23] E.Markman, Lagrangian fibrations of holomorphic-symplectic varieties of K3^[n] -type, in Algebraic and Complex Geometry, Springer Proc. Math. Stat., Volume 71, pp. 241-283 (Springer, Cham, 2014). · Zbl 1319.53102
[24] G.Mongardi, A note on the Kähler and Mori cones of hyperkähler manifolds, 2013, arXiv:1307.0393. · Zbl 1333.14016
[25] H.Minamide, S.Yanagida and K.Yoshioka, Some moduli spaces of Bridgeland’s stability conditions, Int. Math. Res. Not. IMRN19 (2014), 5264-5327.10.1093/imrn/rnt126 · Zbl 1327.14087 · doi:10.1093/imrn/rnt126
[26] Y.Namikawa, Deformation theory of singular symplectic n-folds, Math. Ann.319(3) (2001), 597-623.10.1007/PL00004451 · Zbl 0989.53055 · doi:10.1007/PL00004451
[27] Z.Ran, Hodge theory and deformations of maps, Compos. Math.97(3) (1995), 309-328. · Zbl 0845.14007
[28] Y.Toda, Semistable objects in derived categories of K3 surfaces, in Higher Dimensional Algebraic Varieties and Vector Bundles, RIMS Kôkyûroku Bessatsu, Volume B9, pp. 175-188 (Res. Inst. Math. Sci. (RIMS), Kyoto, 2008). · Zbl 1195.14017
[29] M.Verbitsky, Mapping class group and a global Torelli theorem for hyperkähler manifolds, Duke Math. J.162(15) (2013), 2929-2986. Appendix A by Eyal Markman.10.1215/00127094-2382680 · Zbl 1295.53042 · doi:10.1215/00127094-2382680
[30] C.Voisin, Sur la stabilité des sous-variétés Lagrangiennes des variétés symplectiques holomorphes, Complex projective geometry179 (1992), 294.10.1017/CBO9780511662652.022 · Zbl 0765.32012 · doi:10.1017/CBO9780511662652.022
[31] K.Yoshioka, Moduli spaces of stable sheaves on abelian surfaces, Math. Ann.321(4) (2001), 817-884.10.1007/s002080100255 · Zbl 1066.14013 · doi:10.1007/s002080100255
[32] K.Yoshioka, Bridgeland’s stability and the positive cone of the moduli spaces of stable objects on an abelian surface, 2012, arXiv:1206.4838. · Zbl 1375.14066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.