×

Lagrangian 4-planes in holomorphic symplectic varieties of \(K3^{[4]}\)-type. (English) Zbl 1307.14014

Let \(S\) be a \(K3\) surface and \((\cdot,\cdot)\) be the intersection form on \(S\). It is known that one can characterize the Mori cone of effective curves of \(S\) by means of nodal classes, i.e. effective curve classes \(C\) for which \((C,C)=-2\).
With this in mind, B. Hassett and Y. Tschinkel [Asian J. Math. 14, No. 3, 303–322 (2010; Zbl 1216.14012)] conjectured an analogue for irreducible holomorphic symplectic varieties, i.e. they conjecture that the Mori cone of an irreducible holomorphic symplectic variety is controlled by nodal classes \(C\) such that \((C,C)=-\gamma\) where the \((\cdot, \cdot)\) is the Beauville-Bogomolov form and \(\gamma\) is related to the extremal contraction associated to \(C\).
More precisely, when \(X\) is deformation-equivalent to the Hilbert scheme of \(n\) points on a \(K3\) surface \(S\), the form of the conjecture becomes:
Conjecture (Hasset, Tschinkel). Let \(X\) be of \(K3^{[n]}\)-type, let \(\mathbb P^n \subset X\) a smoothly embedded Lagrangian \(n\)-plane, and \(\ell\in H^2(X;\mathbb Z)\) the class of the line in \(\mathbb P^n\). Then \((\ell,\ell) = -\frac{n+3}{2}\).
The conjecture has been proven for \(n=2,3\) and the paper provides the proof for \(n=4\). The proof uses representation theory of the monodromy group of \(X\), in order to relate the intersection theory of \(X\) to that of a Hilbert scheme of 4 points on a \(K3\) surface. This also allows the authors to determine the class of the Lagrangian 4-plane classes on \(X\) of \(K3^{[4]}\)-type and show that there is a unique monodromy orbit of Lagrangian 4-planes.

MSC:

14C25 Algebraic cycles
14G05 Rational points
14J28 \(K3\) surfaces and Enriques surfaces

Citations:

Zbl 1216.14012

Software:

SageMath; Magma; PARI/GP

References:

[1] Bayer A., Hassett B., Tschinkel Yu., Mori cones of holomorphic symplectic varieties of K3 type, preprint available at http://arxiv.org/abs/1307.2291; · Zbl 1375.14124
[2] Bayer A., Macrì E., Projective and birational geometry of Bridgeland moduli spaces, preprint avaliable at http://arxiv.org/abs/1203.4613; · Zbl 1314.14020
[3] Bayer A., Macrì E., MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations, preprint available at http://arxiv.org/abs/1301.6968; · Zbl 1308.14011
[4] Beauville A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom., 1983, 18(4), 755-782; · Zbl 0537.53056
[5] Bosma W., Cannon J., Playoust C., The Magma algebra system. I. The user language, In: Computational Algebra and Number Theory, London, August 23-27, 1993, J. Symbolic Comput., 1997, 24(3-4), 235-265; · Zbl 0898.68039
[6] Cohen H., A Course in Computational Algebraic Number Theory, Grad. Texts in Math., 138, Springer, Berlin, 1993; · Zbl 0786.11071
[7] Ellingsrud G., Göttsche L., Lehn M., On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom., 2001, 10(1), 81-100; · Zbl 0976.14002
[8] Ellingsrud G., Strømme S.A., On the homology of the Hilbert scheme of points in the plane, Invent. Math., 1987, 87(2), 343-352 http://dx.doi.org/10.1007/BF01389419; · Zbl 0625.14002
[9] Fujiki A., On the de Rham cohomology group of a compact Kähler symplectic manifold, In: Algebraic Geometry, Sendai, June 24-29, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 105-165; · Zbl 0654.53065
[10] Fulton W., Harris J., Representation Theory, Grad. Texts in Math., 129, Springer, New York, 1991; · Zbl 0744.22001
[11] Grigorov G., Jorza A., Patrikis S., Stein W.A., Tarniţă C., Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves, Math. Comp., 2009, 78(268), 2397-2425 http://dx.doi.org/10.1090/S0025-5718-09-02253-4; · Zbl 1209.11059
[12] Harvey D., Hassett B., Tschinkel Yu., Characterizing projective spaces on deformations of Hilbert schemes of K3 surfaces, preprint available at http://arxiv.org/abs/1011.1285; · Zbl 1235.14037
[13] Hassett B., Tschinkel Yu., Moving and ample cones of holomorphic symplectic fourfolds, Geom. Funct. Anal., 2009, 19(4), 1065-1080 http://dx.doi.org/10.1007/s00039-009-0022-6; · Zbl 1183.14058
[14] Hassett B., Tschinkel Yu., Intersection numbers of extremal rays on holomorphic symplectic varieties, Asian J. Math., 2010, 14(3), 303-322 http://dx.doi.org/10.4310/AJM.2010.v14.n3.a2; · Zbl 1216.14012
[15] Hassett B., Tschinkel Yu., Hodge theory and Lagrangian planes on generalized Kummer fourfolds, preprint availabe at http://arxiv.org/abs/1004.0046; · Zbl 1296.14008
[16] Lehn M., Sorger C., The cup product of Hilbert schemes for K3 surfaces, Invent. Math., 2003, 152(2), 305-329 http://dx.doi.org/10.1007/s00222-002-0270-7; · Zbl 1035.14001
[17] Looijenga E., Peters C., Torelli theorems for Kähler K3 surfaces, Compositio Math., 1980/81, 42(2), 145-186; · Zbl 0477.14006
[18] Markman E., On the monodromy of moduli spaces of sheaves on K3 surfaces, J. Algebr. Geom., 2008, 17(1), 29-99 http://dx.doi.org/10.1090/S1056-3911-07-00457-2; · Zbl 1185.14015
[19] Markman E., The Beauville-Bogomolov class as a characteristic class, preprint availabe at http://arxiv.org/abs/1105.3223; · Zbl 1439.14123
[20] Markman E., Private communication;
[21] Mongardi G., A note on the Kähler and Mori cones of manifolds of K3[n] type, preprint available at http://arxiv.org/abs/1307.0393; · Zbl 1333.14016
[22] Ran Z., Hodge theory and deformations of maps, Compositio Math., 1995, 97(3), 309-328; · Zbl 0845.14007
[23] Stein W.A. et al., Sage Mathematics Software, Version 5.2, The Sage Development Team, 2013, available at http://www.sagemath.org;
[24] Voisin C., Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes, In: Complex Projective Geometry, Trieste, June 19-24, Bergen, July 3-6, 1989, London Math. Soc. Lecture Note Ser., 179, Cambridge University Press, Cambridge, 1992, 294-303; · Zbl 0765.32012
[25] The PARI Group, Bordeaux, PARI/GP, Version 2.5.4, 2012, available at http://pari.math.u-bordeaux.fr;
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.