×

Packings with horo- and hyperballs generated by simple frustum orthoschemes. (English) Zbl 1399.52039

Summary: We deal with the packings derived by horo- and hyperballs (briefly hyp-hor packings) in \(n\)-dimensional hyperbolic spaces \(\mathbb H^n\) \((n = 2, 3)\) which form a new class of the classical packing problems. We construct in the 2- and 3-dimensional hyperbolic spaces hyp-hor packings that are generated by complete Coxeter tilings of degree 1 i.e. the fundamental domains of these tilings are simple frustum orthoschemes and we determine their densest packing configurations and their densities.
We prove using also numerical approximation methods that in the hyperbolic plane (\(n = 2\)) the density of the above hyp-hor packings arbitrarily approximate the universal upper bound of the hypercycle or horocycle packing density \(3/\pi\) and in \(\mathbb H^3\) the optimal configuration belongs to the [7,3,6] Coxeter tiling with density \(\approx 0.83267\).
Moreover, we study the hyp-hor packings in truncated orthoschemes [\(p\), 3, 6] \((6 < p < 7, p \in\mathbb R)\) whose density function attains its maximum for a parameter which lies in the interval [6.05, 6.06] and the densities for parameters lying in this interval are larger that \(\approx 0.85397\). That means that these locally optimal hyp-hor configurations provide larger densities that the Böröczky-Florian density upper bound (\(\approx 0.85328\)) for ball and horoball packings [K. Böröczky and A. Florian, Acta Math. Acad. Sci. Hung. 15, 237–245 (1964; Zbl 0125.39803)] but these hyp-hor packing configurations can not be extended to the entirety of hyperbolic space \(\mathbb H^3\).

MSC:

52C17 Packing and covering in \(n\) dimensions (aspects of discrete geometry)
52C22 Tilings in \(n\) dimensions (aspects of discrete geometry)
52B15 Symmetry properties of polytopes

Citations:

Zbl 0125.39803

References:

[1] Bezdek K.: Sphere packings revisited. Eur. J. Combin., 27, 864–883 (2006) · Zbl 1091.52010 · doi:10.1016/j.ejc.2005.05.001
[2] J. Bolyai, The Science of Absolute Space (Austin, Texas, 1891). · JFM 01.0276.01
[3] Böröczky K.: Packing of spheres in spaces of constant curvature. Acta Math. Acad. Sci. Hungar. 32, 243–261 (1978) · Zbl 0422.52011 · doi:10.1007/BF01902361
[4] Böröczky K., Florian A.: Über die dichteste Kugelpackung im hyperbolischen Raum. Acta Math. Acad. Sci. Hung. 15, 237–245 (1964) · Zbl 0125.39803 · doi:10.1007/BF01897041
[5] G. Fejes Tóth, G. Kuperberg and W. Kuperberg, Highly saturated packings and reduced coverings, Monatsh. Math., 125 (1998), 127–145. · Zbl 0901.52020
[6] L. Fejes Tóth, Regular Figures, Macmillian (New York, 1964).
[7] Im Hof H. C.: Napier cycles and hyperbolic Coxeter groups. Bull. Soc. Math. Belgique, 42, 523–545 (1990) · Zbl 0790.20059
[8] Horváth Á.G.: Formulas on hyperbolic volume. Aequat. Math. 83, 97–116 (2012) · Zbl 1242.51015 · doi:10.1007/s00010-011-0100-3
[9] Jacquemet M.: The inradius of a hyperbolic truncated n-simplex. Discrete Comput. Geom. 51, 997–1016 (2014) · Zbl 1319.52021
[10] Kaplinskaja I. M.: Discrete groups generated by reflections in the faces of simplicial prisms in Lobachevskian spaces. Math. Notes, 15, 88–91 (1974) · Zbl 0288.50014 · doi:10.1007/BF01153552
[11] Kellerhals R. (1989) On the volume of hyperbolic polyhedra. Math. Ann. 245: 541–569 · Zbl 0664.51012
[12] Kozma R.T., Szirmai J.: Optimally dense packings for fully asymptotic Coxeter tilings by horoballs of different types. Monatsh. Math. 168, 27–47 (2012) · Zbl 1255.52015 · doi:10.1007/s00605-012-0393-x
[13] Kozma R.T., Szirmai J.: new lower bound for the optimal ball packing density of hyperbolic 4-space. Discrete Comput. Geom. 53, 182–198 (2015) · Zbl 1314.52018 · doi:10.1007/s00454-014-9634-1
[14] Molnár E.: The projective interpretation of the eight 3-dimensional homogeneous geometries. Beitr. Algebra Geom. 38, 261–288 (1997) · Zbl 0889.51021
[15] Szirmai J.: The optimal ball and horoball packings to the Coxeter honeycombs in the hyperbolic d-space. Beitr. Algebra Geom. 48, 35–47 (2007) · Zbl 1126.52020
[16] Szirmai J.: Horoball packings to the totally asymptotic regular simplex in the hyperbolic n-space. Aequat. Math. 85, 471–482 (2013) · Zbl 1277.52020 · doi:10.1007/s00010-012-0158-6
[17] Szirmai J.: Horoball packings and their densities by generalized simplicial density function in the hyperbolic space. Acta Math. Hungar. 136, 39–55 (2012) · Zbl 1274.52029 · doi:10.1007/s10474-012-0205-8
[18] Szirmai J.: The p-gonal prism tilings and their optimal hypersphere packings in the hyperbolic 3-space. Acta Math. Hungar. 111, 65–76 (2006) · Zbl 1111.52015 · doi:10.1007/s10474-006-0034-8
[19] Szirmai J.: The regular prism tilings and their optimal hyperball packings in the hyperbolic n-space. Publ. Math. Debrecen 69, 195–207 (2006) · Zbl 1121.52033
[20] Szirmai J.: The optimal hyperball packings related to the smallest compact arithmetic 5-orbifolds. Kragujevac J. Math. 40, 260–270 (2016) · Zbl 1461.52019 · doi:10.5937/KgJMath1602260S
[21] Szirmai J.: The least dense hyperball covering to the regular prism tilings in the hyperbolic n-space. Ann. Mat. Pur. Appl. 195, 235–248 (2016) · Zbl 1348.52016 · doi:10.1007/s10231-014-0460-0
[22] Szirmai J.: A candidate for the densest packing with equal balls in Thurston geometries. Beitr. Algebra Geom. 55, 441–452 (2014) · Zbl 1301.52035 · doi:10.1007/s13366-013-0158-2
[23] Vermes I.: Ausfüllungen der hyperbolischen Ebene durch kongruente Hyperzykelbereiche. Period. Math. Hungar. 10, 217–229 (1979) · Zbl 0401.52006 · doi:10.1007/BF02020020
[24] Vermes I.: Über reguläre Überdeckungen der Bolyai-Lobatschewskischen Ebene durch kongruente Hyperzykelbereiche. Period. Math. Hungar. 25, 249–261 (1981) · Zbl 0473.52013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.