×

The inradius of a hyperbolic truncated \(n\)-simplex. (English) Zbl 1319.52021

For a hyperbolic simplex \(T\), some of whose vertices lie outside the hyperbolic space, the intersection of \(T\) with the half-spaces polar to some of the ultra-ideal vertices is called a hyperbolic truncated simplex. This class of polytopes includes many interesting members such as simplices, rectangular hexagons, Lambert cubes, straight simplicial prisms and, most notably, provides a way to construct hyperbolic Coxeter polytopes, in particular those giving rise to “smallest” hyperbolic orbifolds in various senses (see e.g. [R. Kellerhals, Comput. Methods Funct. Theory 14, No. 2–3, 465–481 (2014; Zbl 1307.57001)]).
The author computes the radius of a maximal sphere contained in an arbitrary truncated simplex (see Section 3.2). In Section 4.2, he applies this result to numerically compute the answer for some Coxeter polytopes that give rise to “small” hyperbolic orbifolds. This computation is motivated by the observation that the inradii of such small Coxeter polytopes are related to hyperbolic ball packings of large density.

MSC:

52B11 \(n\)-dimensional polytopes
51M25 Length, area and volume in real or complex geometry
51F15 Reflection groups, reflection geometries
52C17 Packing and covering in \(n\) dimensions (aspects of discrete geometry)
51M10 Hyperbolic and elliptic geometries (general) and generalizations

Citations:

Zbl 1307.57001
Full Text: DOI

References:

[1] Beardon, A.F.: The Geometry of Discrete Groups. Springer, Berlin (1983) · Zbl 0528.30001 · doi:10.1007/978-1-4612-1146-4
[2] Belolipetsky, M., Emery, V.: On volumes of arithmetic quotients of \[{PO}(n,1)^{\circ }\] PO(n,1)∘, \[n\] n odd. Proc. Lond. Math. Soc. 105, 541-570 (2012) · Zbl 1327.22013 · doi:10.1112/plms/pds009
[3] \[B \ddot{\rm o}\] o¨r \[\ddot{\rm o}\] o¨czky, K.: Packings of spheres in spaces of constant curvature. Acta Math. Acad. Sci. Hung. 32(3-4), 243-261 (1978) · Zbl 0422.52011
[4] Bugaenko, V.O.: Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring \[\mathbb{Z}[(\sqrt{5}+1)/2]\] Z[(\sqrt{5}+1)/2]. Moskow Univ. Math. Bull. 5, 6-14 (1984)
[5] Bugaenko, VO, Arithmetic crystallographic groups generated by reflections, and reflective hyperbolic lattices, No. 8 (1992), New York · Zbl 0768.20020
[6] Diaz, R.: A characterization of Gram matrices of polytopes. Discrete Comput. Geom. 21, 581-601 (1999) · Zbl 0963.15027 · doi:10.1007/PL00009440
[7] Emery, V.: Even unimodular Lorentzian lattices and hyperbolic volume. J. Reine Angew. Math. 2014(690), 173-177 (2012) · Zbl 1296.22011
[8] Kellerhals, R.: On the volume of hyperbolic polyhedra. Math. Ann. 285, 541-569 (1989) · Zbl 0664.51012 · doi:10.1007/BF01452047
[9] Kellerhals, R.: Regular simplices and lower volume bounds for hyperbolic \[n\] n-manifolds. Ann. Glob. Anal. Geom. 13, 377-392 (1995) · Zbl 0874.52002 · doi:10.1007/BF00773406
[10] Kellerhals, R.: Hyperbolic orbifolds of minimal volume (2013). To appear in CMFT Gehring Memorial Volume. · Zbl 1307.57001
[11] Minor, J., The Schläfli differential equality, No. 1, 281-295 (1994), Houston
[12] Ratcliffe, J.G.: Foundations of Hyperbolic Manifolds. Springer, Berlin (1994) · Zbl 0809.51001 · doi:10.1007/978-1-4757-4013-4
[13] Siegel, C.L.: Some remarks on discontinuous groups. Ann. Math. 46(4), 708-718 (1945) · Zbl 0061.04505 · doi:10.2307/1969206
[14] Szirmai, J.: The regular prism tilings and their optimal hyperball packings in the hyperbolic \[n\] n-space. Publicationes Mathematicae Debrecen 69(1-2), 195-207 (2006) · Zbl 1121.52033
[15] Tumarkin, P.: Hyperbolic Coxeter \[n\] n-polytopes with \[n+2\] n+2 facets. Math. Notes 75, 909-916 (2004) · Zbl 1062.52012 · doi:10.1023/B:MATN.0000030993.74338.dd
[16] Umemoto, Y.: Growth rates of cocompact hyperbolic Coxeter groups and 2-Salem numbers. Algebr. Geom. Topol. (2013). doi:10.2140/agt.2014.14.101 · Zbl 1294.20051
[17] Vinberg, E.B.: Hyperbolic reflection groups. Russ. Math. Surv. 40(1), 31-75 (1985) · Zbl 0579.51015 · doi:10.1070/RM1985v040n01ABEH003527
[18] Vinberg, E.B. (ed.): Geometry II—Spaces of Constant Curvature. Springer, Berlin (1993) · Zbl 0786.00008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.