×

Unified Lyapunov functional for an age-structured virus model with very general nonlinear infection response. (English) Zbl 1398.92235

Summary: The aim of this paper is to provide a unified Lyapunov functional for an age-structured model describing a virus infection. Our main contribution is to consider a very general nonlinear infection function, gathering almost all usual ones, for the following problem: \[ \begin{cases} T'(t)=A- dT(t)-f(T(t),V(t)) t \geq 0, \\ i_t(t,a)+i_a(t,a)=-\delta (a) i(t,a), \\ V'(t)=\int _0^{\infty } p(a)i(t,a)da-cV(t). \end{cases} \eqno {(0,1)} \] where \(T(t), i(t,a)\) and \(V(t)\) are the populations of uninfected cells, infected cells with infection age \(a\) and free virus at time \(t\) respectively. The functions \(\delta (a), p(a)\), are respectively, the age-dependent per capita death, and the viral production rate of infected cells with age \(a\). The global asymptotic analysis is established, among other results, by the use of compact attractor and strongly uniform persistence. Finally some numerical simulations illustrating our results are presented.

MSC:

92D30 Epidemiology
34D23 Global stability of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Althaus, CL; Boer, RJ, Dynamics of immune escape during HIV/SIV infection, PloS Comput. Biol., 4, e10000103, (2008) · doi:10.1371/journal.pcbi.1000103
[2] Bentout, S; Touaoula, TM, Global analysis of an infection age model with a class of nonlinear incidence rates, J. Math. Anal. Appl., 434, 1211-1239, (2016) · Zbl 1335.92102 · doi:10.1016/j.jmaa.2015.09.066
[3] Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2000) · Zbl 0967.92015
[4] Brauer, F; Shuai, Z; Driessche, P, Dynamics of an age of infection cholera model, Math. Biosci. Eng., 10, 1335-1349, (2013) · Zbl 1273.92050
[5] Cai, L; Martcheva, M; Li, X-Z, Epidemic models with age of infection, indirect transmission and incomplete treatment, Discrete Contin. Dyn. Syst. B, 18, 2239-2265, (2013) · Zbl 1277.92021 · doi:10.3934/dcdsb.2013.18.2239
[6] Castillo-Chavez, C; Hethecote, HW; Andreasen, V; Levin, SA; Liu, WM, Epidemiological models with age structure, proportionate mixing and cross-immunity, J. Math. Biol., 27, 240-260, (1989) · Zbl 0715.92028
[7] Culshaw, RV; Ruan, S, A delay-differential equation model of HIV infection of \(CD4^{+}\) T-cells, Math. Biosci., 165, 27-39, (2000) · Zbl 0981.92009 · doi:10.1016/S0025-5564(00)00006-7
[8] leenheer, P; Smith, HL, Virus dynamics: a global analysis, SIAM J. Appl. Math., 63, 1313-1327, (2003) · Zbl 1035.34045 · doi:10.1137/S0036139902406905
[9] Demass, RD; Ducrot, A, An age-strutured within-host model for multistrain malaria infections, SIAM J. Appl. Math., 73, 572-593, (2013) · Zbl 1267.35235 · doi:10.1137/120890351
[10] Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, Chichester (2000) · Zbl 0997.92505
[11] Feng, Z; Thieme, HR, Endemic models with arbitrarily distributed periods of infection I: fundamental properties of the model, SIAM J. Appl. Math., 61, 803-833, (2000) · Zbl 0991.92028 · doi:10.1137/S0036139998347834
[12] Feng, Z; Thieme, HR, Endemic models with arbitrarily distributed periods of infection II: fast disease dynamics and permanent recovery, SIAM J. Appl. Math., 61, 983-1012, (2000) · Zbl 1016.92035 · doi:10.1137/S0036139998347846
[13] Hale, J; Waltman, P, Persistence in infinite dimensional systems, SIAM J. Math. Anal., 20, 388-395, (1989) · Zbl 0692.34053 · doi:10.1137/0520025
[14] Huang, G; Ma, W; Takeuchi, Y, Global properties for virus dynamics model with beddington-deangelis functional response, Appl. Math. Lett., 22, 1690-1693, (2009) · Zbl 1178.37125 · doi:10.1016/j.aml.2009.06.004
[15] Huang, G; Takeuchi, Y; Ma, W, Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl. Math., 70, 2693-2708, (2010) · Zbl 1209.92035 · doi:10.1137/090780821
[16] Huang, G; Liu, X; Takeuchi, Y, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math., 72, 25-38, (2012) · Zbl 1238.92032 · doi:10.1137/110826588
[17] Korobeinikov, A, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., 68, 615-626, (2006) · Zbl 1334.92410 · doi:10.1007/s11538-005-9037-9
[18] Korobeinikov, A; Global, A, Properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69, 1871-1886, (2007) · Zbl 1298.92101 · doi:10.1007/s11538-007-9196-y
[19] Magal, P; Zhao, X-Q, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37, 251-275, (2005) · Zbl 1128.37016 · doi:10.1137/S0036141003439173
[20] Magal, P; McCluskey, CC; Webb, GF, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89, 1109-1140, (2010) · Zbl 1208.34126 · doi:10.1080/00036810903208122
[21] McCluskey, CC, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 6, 603-610, (2009) · Zbl 1190.34108 · doi:10.3934/mbe.2009.6.603
[22] McCluskey, CC, Complete global stability for a SIR epidemic model with delay-distributed or discrete, Nonlinear Anal., 11, 55-59, (2010) · Zbl 1185.37209 · doi:10.1016/j.nonrwa.2008.10.014
[23] Nelson, PW; Perelson, AS, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci., 179, 73-94, (2002) · Zbl 0992.92035 · doi:10.1016/S0025-5564(02)00099-8
[24] Nelson, PW; Gilchrist, MA; Coombs, D; Hyman, JM; Perelson, AS, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1, 267-288, (2004) · Zbl 1060.92038 · doi:10.3934/mbe.2004.1.267
[25] Nowak, M.A., May, R.M.: Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, Oxford (2000) · Zbl 1101.92028
[26] Perelson, AS; Nelson, PW, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 41, 3-44, (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[27] Rong, L; Feng, Z; Perelson, AS, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, SIAM J. Appl. Math., 67, 731-756, (2007) · Zbl 1121.92043 · doi:10.1137/060663945
[28] Smith, H.L., Thieme, H.R.: Dynamical Systems and Population Persistence. Graduate studies in mathematics. AMS, Providence (2011) · Zbl 1214.37002
[29] Thieme, HR, Uniform persistence and permanence for nonautonomus semiflows in population biology, Math. Biosci., 166, 173-201, (2000) · Zbl 0970.37061 · doi:10.1016/S0025-5564(00)00018-3
[30] Thieme, H.R.: Mathematics in Population Biology. Princeton University Press, Princeton (2003) · Zbl 1054.92042
[31] Thieme, HR, Global stability of the endemic equilibrium in infinite dimension : Lyapunov functions and positive operators, J. Differ. Equ., 250, 3772-3801, (2011) · Zbl 1215.37052 · doi:10.1016/j.jde.2011.01.007
[32] Thieme, HR; Castillo-Chavez, C, How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS?, SIAM J. Appl. Math., 53, 1447-1479, (1993) · Zbl 0811.92021 · doi:10.1137/0153068
[33] Vargas-De-Leon, C; Esteva, L; Korobeinikov, A, Age-dependency in host-vector models: the global analysis, Appl. Math. Comput., 243, 969-981, (2014) · Zbl 1335.92104
[34] Wang, J; Zhang, R; Kuniya, T, Mathematical analysis for an age-structured HIV infection model with saturation infection rate, Electron. J. Differ. Equ., 33, 1-19, (2015) · Zbl 1325.92085
[35] Yang, Y; Ruan, S; Xiao, D, Global stability of an age-structured virus dynamics model with beddington-deangelis infection function, Math. Biosci. Eng., 12, 859-877, (2015) · Zbl 1330.35480 · doi:10.3934/mbe.2015.12.859
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.