×

Age-dependency in host-vector models: the global analysis. (English) Zbl 1335.92104

Summary: In this paper, we introduce and analyze two structured models for the transmission of a vector-borne infectious disease. The first of these models assumes that the level of contagiousness and the rate of removal (recovery) of infected hosts depends on the infection age. In the second model the hosts population is structured with respect to the physical age of the hosts, and the susceptibility of the hosts is assumed to be age-dependent. For these models, the threshold parameter for the existence of a positive (endemic) equilibrium state is determined, and the global asymptotic stability of the equilibrium states are established by the Lyapunov’s direct method.

MSC:

92D30 Epidemiology

References:

[1] Anderson, R. M.; May, R. M., Infectious Diseases in Humans: Dynamics and Control (1991), Oxford University Press: Oxford University Press Oxford
[2] Buonomo, B.; Vargas-De-León, C., Stability and bifurcation analysis of a vector-bias model of malaria transmission, Math. Biosci., 242, 59-67 (2013) · Zbl 1316.92081
[3] Bowman, C.; Gumel, A. B.; van den Driessche, P.; Wu, J.; Zhu, H., A mathematical model for assessing control strategies against West Nile virus, Bull. Math. Biol., 67, 1107-1133 (2005) · Zbl 1334.92392
[4] Chamchod, F.; Britton, N. F., Analysis of a vector-bias model on malaria transmission, Bull. Math. Biol., 73, 639-657 (2011) · Zbl 1225.92030
[5] Cruz-Pacheco, G.; Esteva, L.; Montaño-Hirose, J. A.; Vargas, C., Modelling the dynamics of West Nile Virus, Bull. Math. Biol., 67, 1157-1172 (2005) · Zbl 1334.92397
[6] Cruz-Pacheco, G.; Esteva, L.; Vargas, C., Control measures for Chagas disease, Math. Biosci., 237, 49-60 (2012) · Zbl 1241.92049
[7] Cooke, K. L., Stability analysis for a vector disease model, Rocky Mountain J. Math., 9, 31-42 (1979) · Zbl 0423.92029
[9] Dumont, Y.; Chiroleu, F.; Domerg, C., On a temporal model for the Chikungunya disease: modeling, theory and numerics, Math. Biosci., 213, 1, 80-91 (2008) · Zbl 1135.92028
[10] Esteva, L.; Vargas, C., Analysis of a dengue disease transmission model, Math. Biosci., 150, 131-151 (1998) · Zbl 0930.92020
[11] Esteva, L.; Vargas, C., A model for dengue disease with variable human population, J. Math. Biol., 38, 220-240 (1999) · Zbl 0981.92016
[12] Esteva, L.; Gumel, A. B.; Vargas-De-León, C., Qualitative study of transmission dynamics of antibiotic-resistant malaria, Math. Comput. Model., 50, 611-630 (2009) · Zbl 1185.34061
[13] Feng, Z.; Velasco-Hernández, J. X., Competitive exclusion in a vector-host model for dengue fever, J. Math. Biol., 35, 523-544 (1997) · Zbl 0878.92025
[14] Gratz, N. G., Emerging and resurging vector-borne diseases, Annu. Rev. Entomol., 44, 51-75 (1999)
[15] Gubler, D. J., Resurgent vector-borne diseases as a global health problem, Emerg. Infectious Dis., 4, 442-450 (1998)
[16] Inaba, H.; Sekine, H., A mathematical model for Chagas disease with infection-age-dependent infectivity, Math. Biosci., 190, 39-69 (2004) · Zbl 1049.92033
[17] Korobeinikov, A., Global properties of infectious disease models with non-linear incidence, Bull. Math. Biol., 69, 6, 1871-1886 (2007) · Zbl 1298.92101
[18] Korobeinikov, A., Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate, Math. Med. Biol., 26, 3, 225-239 (2009) · Zbl 1171.92034
[19] Korobeinikov, A., Stability of ecosystem: global properties of a general prey-predator model, Math. Med. Biol., 26, 4, 309-321 (2009) · Zbl 1178.92053
[20] Lemon, S. M.; Sparling, P. F.; Hamburg, M. A.; Relman, D. A.; Choffness, E. R.; Mack, A., Vector-Borne Diseases: Understanding the Environmental, Human Health, and Ecological Connections (2008), National Academies Press: National Academies Press Washington DC
[21] Magal, P.; McCluskey, C. C., Two-group infection age model including an application to nosocomial infection, SIAM J. Appl. Math., 73, 2, 1058-1095 (2013) · Zbl 1307.35306
[22] Magal, P.; McCluskey, C. C.; Webb, G., Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89, 1109-1140 (2010) · Zbl 1208.34126
[23] McCluskey, C. C., Delay versus age-of-infection-global stability, Appl. Math. Comput., 217, 3046-3049 (2010) · Zbl 1202.92079
[24] Melnik, A. V.; Korobeinikov, A., Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility, Math. Biosci. Eng., 10, 369-378 (2013) · Zbl 1260.92106
[25] Moulay, D.; Aziz-Alaoui, M. A.; Cadivel, M., The Chikungunya disease: modeling, vector and transmission global dynamics, Math. Biosci., 229, 1, 50-63 (2011) · Zbl 1208.92044
[26] Mukhopadhyay, B. B.; Tapaswi, P. K., An SIRS epidemic model of Japanese encephalitis, Int. J. Math. Math. Sci., 17, 347-355 (1994) · Zbl 0794.92022
[27] Novoseltsev, V. N.; Michalski, A. I.; Novoseltseva, J. A.; Yashin, A. I.; Carey, J. R.; Ellis, M., An age-structured extension to the vectorial capacity model, PloS One, 7, 6, e39479 (2012)
[29] Ruan, S.; Xiao, D.; Beier, J. C., On the delayed Ross-Macdonald model for malaria transmission, Bull. Math. Biol., 70, 1098-1114 (2008) · Zbl 1142.92040
[30] Takeuchi, Y.; Ma, W., Delayed SIR epidemic models for vector diseases, (Takeuchi, Y.; Iwasa, Y.; Sato, K., Mathematics for Life Science and Medicine (2007), Springer-Verlag), 51-66
[31] Thomas, D. M.; Urena, B., A model describing the evolution of West Nile-like encephalitis in New York City, Math. Comput. Model., 34, 771-781 (2001) · Zbl 0999.92025
[32] Tumwiine, J.; Mugisha, J. Y.T.; Luboobi, L. S., A mathematical model for the dynamics of malaria in a human host and mosquito vector with temporary immunity, Appl. Math. Comput., 189, 1953-1965 (2007) · Zbl 1117.92039
[33] Vargas-De-León, C., Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes, Math. Biosci. Eng., 9, 1, 165-174 (2012) · Zbl 1259.34071
[34] Velasco-Hernández, J. X., A model for chagas disease involving transmission by vectors and blood transfusion, Theor. Popul. Biol., 46, 1-31 (1994) · Zbl 0804.92024
[35] Wei, H. M.; Li, X. Z.; Martcheva, M., An epidemic model of a vector-borne disease with direct transmission and time delay, J. Math. Anal. Appl., 342, 895-908 (2008) · Zbl 1146.34059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.