×

Joint evolution of dispersal propensity and site selection in structured metapopulation models. (English) Zbl 1397.92595

Summary: We propose a novel mathematical model for a metapopulation in which dispersal occurs on two levels: juvenile dispersal from the natal site is mandatory but it may take place either locally within the natal patch or globally between patches. Within each patch, individuals live in sites. Each site can be inhabited by at most one individual at a time and it may be of high or low quality. A disperser immigrates into a high-quality site whenever it obtains one, but it immigrates into a low-quality site only with a certain probability that depends on the time within the dispersal season. The vector of these low-quality-site-acceptance probabilities is the site-selection strategy of an individual. We derive a proxy for the invasion fitness in this model and study the joint evolution of long-distance-dispersal propensity and site-selection strategy. We focus on the way different ecological changes affect the evolutionary dynamics and study the interplay between global patch-to-patch dispersal and local site-selection. We show that ecological changes affect site-selection mainly via the severeness of competition for sites, which often leads to effects that may appear counterintuitive. Moreover, the metapopulation structure may result in extremely complex site-selection strategies and even in evolutionary cycles. The propensity for long-distance dispersal is mainly determined by the metapopulation-level ecological factors. It is, however, also strongly affected by the winter-survival of the site-holders within patches, which results in surprising non-monotonous effects in the evolution of site-selection due to interplay with long-distance dispersal. Altogether, our results give new additional support to the recent general conclusion that evolution of site-selection is often dominated by the indirect factors that take place via density-dependence, which means that evolutionary responses can rarely be predicted by intuition.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
Full Text: DOI

References:

[1] Abrams, P.; Ruokolainen, L., How does adaptive consumer movement affect population dynamics in consumer-resource metacommunities with homogeneous patches?, J. Theor. Biol, 277, 99-110, (2011) · Zbl 1405.92275
[2] Ajar, E., Analysis of disruptive selection in subdivided populations, BMC Evol. Biol., 3, 22, 1-12, (2003)
[3] Bach, L. A.; Thomsen, R.; Pertoldi, C.; Loeschcke, V., Kin competition and the evolution of dispersal in an individual-based model, Ecol. Model., 192, 658-666, (2005)
[4] Baker, M. B.; Rao, S., Incremental costs and benefits shape natal dispersal: theory and example with hemilepistus reaumuri, Ecology, 85, 1039-1051, (2004)
[5] Brown, J., Habitat selection as an evolutionary game, Evolution, 44, 732-746, (1990)
[6] Cadet, C.; Ferrière, R.; Metz, J. A.; van Baalen, M., The evolution of dispersal under demographic stochasticity, Am. Nat., 162, 427-441, (2003)
[7] Cantrell, R.; Cosner, C.; DeAngelis, D. L.; Padron, V., The ideal free distribution as an evolutionarily stable strategy, J. Biol. Dyn., 1, 249-271, (2007) · Zbl 1122.92062
[8] Cantrell, R.; Cosner, C.; Lou, Y., Evolution of dispersal and the ideal free distribution, Math. Biosci. Eng., 7, 17-36, (2010) · Zbl 1188.35102
[9] Champagnat, N.; Ferriére, R.; Ben Arous, G., The canonical equation of adaptive dynamics: a mathematical view, Selection, 2, 73-83, (2001)
[10] Clobert, J.; Baquette, M.; Benton, T. G.; Bullock, J. M., Dispersal Ecology and Evolution, (2012), Oxford University Press
[11] Clobert, J.; Danchin, E.; Dhondt, A. A.; Nichols, J. D., Dispersal, (2001), Oxford University Press
[12] Comins, H. N.; Hamilton, W. D.; May, R. M., Evolutionarily stable dispersal strategies, J. Theor. Biol., 82, 205-230, (1980)
[13] Conradt, L.; Roper, T. J., Nonrandom movement behavior at habitat boundaries in two butterfly species: implications for dispersal, Ecology, 87, 125-132, (2006)
[14] Cressman, R.; Krivan, V., Migration dynamics for the ideal free distribution, Am. Nat., 168, 384-397, (2006)
[15] Cressman, R.; Krivan, V., The ideal free distribution as an evolutionarily stable state in density-dependent population games, Oikos, 119, 1231-1242, (2010)
[16] Cressman, R.; Krivan, V.; Garay, J., Deal free distributions, evolutionary games, and population dynamics in multiple-species environments, Am. Nat., 164, 473-489, (2004)
[17] Dale, S.; Steifetten, O.; Osiejuk, T. S.; Losak, K.; Cygan, J. P., How do birds search for breeding areas at the landscape level? interpatch movements of male ortolan buntings, Ecography, 29, 886-898, (2006)
[18] Danchin, E.; Heg, D.; Doligez, B., Public information and breeding habitat selection, (Clobert, J.; Danchin, E.; Dhondt, A.; Nichols, J., Dispersal, (2001), Oxford University Press), 243-258
[19] Débarre, F.; Lenormand, T., Distance-limited dispersal promotes coexistence at habitat boundaries: reconsidering the competitive exclusion principle, Ecol. Lett., 14, 260-266, (2011)
[20] Débarre, F.; Nuismer, S. L.; Doebeli, M., Multidimensional (co)evolutionary stability., Am. Nat., 184, 158-171, (2014)
[21] Delgado, M. M.; Barton, K. A.; Bonte, D.; Travis, J. M.J., Prospecting and dispersal: their eco-evolutionary dynamics and implications for population patterns, Proc. R. Soc. Lond. B, 281, (2014)
[22] Della Rossa, F.; Dercole, F.; Landi, P., The branching bifurcation of adaptive dynamics, Int. J. Bifurcat. Chaos, 25, (2015) · Zbl 1319.34079
[23] Dercole, F.; Della Rossa, F.; Landi, P., The transition from evolutionary stability to branching: a catastrophic evolutionary shift, Sci. Reporst, 6, (2016)
[24] Dieckmann, U.; Doebeli, M., On the origin of species by sympatric speciation, Nature, 400, 354-357, (1999)
[25] Dieckmann, U.; Law, R., The dynamical theory of coevolution: a derivation from stochastic ecological processes, J. Math. Biol., 34, 579-612, (1996) · Zbl 0845.92013
[26] Diekmann, O.; Gyllenberg, M.; Huang, H.; Kirkilionis, M.; Metz, J. A.J.; Thieme, H. R., Formulation and analysis of general deterministic structured population models, part II: nonlinear theory, J. Math. Biol., 43, 157-189, (2001) · Zbl 1028.92019
[27] Diekmann, O.; Gyllenberg, M.; Metz, J. A.J., Steady state analysis of structured population models, Theor. Popul. Biol., 63, 309-338, (2003) · Zbl 1098.92062
[28] Diekmann, O.; Gyllenberg, M.; Metz, J. A.J., Physiologically structured population models: towards a general mathematical theory, (Takeuchi, Y.; Iwasa, Y.; Sato, K., Mathematics for Ecology and Environmental Sciences, (2007), Springer Verlag), 5-20
[29] Diekmann, O.; Gyllenberg, M.; Metz, J. A.J.; Thieme, H., On the formulation and analysis of general deterministic structured population models, part i: linear theory, J. Math. Biol., 36, 349-388, (1998) · Zbl 0909.92023
[30] Doebeli, M.; Ruxton, G. D., Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space, Evolution, 51, 1730-1741, (1997)
[31] van Doorn, G. S.; Weissing, F. J., Ecological versus sexual selection models of sympatric speciation: A synthesis, Selection, 2, 17-40, (2001)
[32] Durinx, M.; Metz, J. A.J.; Meszéna, G., Adaptive dynamics for physiologically structured population models, J. Math. Biol., 56, 673-742, (2008) · Zbl 1146.92027
[33] Evans, S. N.; Hening, A.; Schreiber, S. J., Protected polymorphisms and evolutionary stability of patch-selection strategies in stochastic environments, J. Math. Biol., 71, 325-359, (2015) · Zbl 1322.92057
[34] Fretwell, L. D.; Lucas, H. L.J., On territorial behavior and other factors influencing habitat distribution in birds, Acta Biotheor., 19, 16-36, (1969)
[35] Gadgil, M., Dispersal: population consequences and evolution, Ecology, 52, 253-261, (1971)
[36] Gandon, S.; Michalakis, Y., Evolutionarily stable dispersal rate in a metapopulation with extinctions and kin competition, J. Theor. Biol., 199, 275-290, (1999)
[37] Geritz, S. A.H.; Metz, J. A.J.; Rueffler, C., Mutual invadability near evolutionarily singular strategies for multivariate traits, with special reference to the strongly convergence stable case, J. Math. Biol., 72, 1081-1099, (2016) · Zbl 1365.92074
[38] Geritz, S. A.H., Resident-invader dynamics and the coexistence of similar strategies, J. Math. Biol., 50, 67-82, (2005) · Zbl 1055.92042
[39] Geritz, S. A.H.; Gyllenberg, M., Seven ansvers from adaptive dynamics, J. Evol. Biol., 18, 1174-1177, (2005)
[40] Geritz, S. A.H.; Gyllenberg, M.; Jacobs, F. J.A.; Parvinen, K., Invasion dynamics and attractor inheritance, J. Math. Biol., 44, 548-560, (2002) · Zbl 0990.92029
[41] Geritz, S. A.H.; Kisdi, E., Adaptive dynamics in diploid, sexual populations and the evolution of reproductive isolation, Proc. R. Soc. Lond. B, 267, 1671-1678, (2000)
[42] Geritz, S. A.H.; Kisdi, E.; Meszéna, G.; Metz, J. A.J., Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12, 35-57, (1998)
[43] Geritz, S. A.H.; Metz, J. A.J.; Kisdi, E.; Meszéna, G., Dynamics of adaption and evolutionary branching, Phys. Rev. Lett., 78, 10, 2024-2027, (1997)
[44] Gray, R. D.; Kennedy, M., Perceptual constraints on optimal foraging: a reason for departures from the ideal free distribution, Anim. Behav., 47, 469-471, (1994)
[45] Greene, C. M., Habitat selection reduces extinction of populations subject to allee effects, Theor. Pop. Biol., 64, 1-10, (2003) · Zbl 1100.92041
[46] Gyllenberg, M.; Hanski, I., Single-species metapopulation dynamics: a structured model, Theor. Popul. Biol., 42, 35-61, (1992) · Zbl 0758.92011
[47] Gyllenberg, M.; Hanski, I.; Hastings, A., Structured metapopulation models, (Hanski, I.; Gilpin, M. E., Metapopulation Biology: Ecology, Genetics & Evolution, (1997), Academic Press, London), 93-122
[48] Gyllenberg, M.; Kisdi, E.; Utz, M., Evolution of condition-dependent dispersal under kin competition, J. Math. Biol., 57, 285-307, (2008) · Zbl 1141.92030
[49] Gyllenberg, M.; Kisdi, E.; Weigang, H., On the evolution of patch-type dependent immigration, J. Theor. Biol., 395, 115-125, (2016) · Zbl 1343.92415
[50] Gyllenberg, M.; Kisdi, E.; Weigang, H., Coevolution of patch-type dependent immigration and local adaptation, Am. Nat, (2017)
[51] Gyllenberg, M.; Metz, J. A.J., On fitness in structured metapopulations, J. Math. Biol., 43, 545-560, (2001) · Zbl 0995.92034
[52] Gyllenberg, M.; Osipov, A. V.; Söderbacka, G., Bifurcation analysis of a metapopulation model with sources and sinks, J. Nonlinear Sci., 6, 329-366, (1996) · Zbl 0927.37028
[53] Gyllenberg, M.; Parvinen, K.; Dieckmann, U., Evolutionary suicide and evolution of dispersal in structured metapopulations, J. Math. Biol., 45, 79-105, (2002) · Zbl 1014.92025
[54] Gyllenberg, M.; Söderbacka, G.; Ericsson, S., Does migration stabilize local population dynamics? analysis of a discrete metapopulation model., Math. Biosci., 118, 25-49, (1993) · Zbl 0784.92019
[55] Hamilton, W. D.; May, R. M., Dispersal in stable habitats, Nature, 269, 578-581, (1977)
[56] Hanski, I., A practical model of metapopulation dynamics, J. Anim. Ecol., 63, 141-162, (1994)
[57] Hanski, I., Metapopulation dynamics, Nature, 396, 41-49, (1998)
[58] Hanski, I., Metapopulation Ecology, (1999), Oxford University Press
[59] Hanski, I.; Gilpin, M. E., Metapopulation Biology: Ecology, Genetics, and Evolution, (1997), Academic Press San Diego · Zbl 0913.92025
[60] Hanski, I.; Mononen, T., Eco-evolutionary dynamics of dispersal in spatially heterogeneous environments, Ecol. Lett., 14, 1025-1034, (2011)
[61] Hanski, I. K.; Selonen, V., Female-biased natal dispersal in the Siberian flying squirrel, Behav. Ecol., 20, 60-67, (2009)
[62] Harrison, D. J.; Harrison, J. A.; O’Donoghue, M., Predispersal movements of coyote (canis latrans) pups in eastern maine, J. Mammal., 72, 756-763, (1991)
[63] Hastings, A., Can spatial variation alone lead to selection for dispersal?, Theor. Popul. Biol., 24, 244-251, (1983) · Zbl 0526.92025
[64] Hastings, A., Structured models of metapopulation dynamics, Biol. J. Linnean Soc., 42, 57-71, (1991)
[65] Hastings, A.; Wolin, C. L., Within-patch dynamics in a metapopulation, Ecology, 70, 1261-1266, (1989)
[66] Heino, M.; Hanski, I., Evolution of migration rate in a spatially realistic metapopulation model, Am. Nat., 157, 495-511, (2001)
[67] Heino, M.; Metz, J. A.J.; Kaitala, V., The enigma of frequency-dependent selection, Trends Ecol. Evol., 13, 367-370, (1998)
[68] Holt, R. D., Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution, Theor. Popul. Biol., 28, 181-208, (1985) · Zbl 0584.92022
[69] Holt, R. D.; McPeek, M. A., Chaotic population dynamics favors the evolution of dispersal, Am. Nat., 148, 709-718, (1996)
[70] Ito, H.; Sasaki, A., Evolutionary branching under multi-dimensional evolutionary constraints, J. Theor. Biol., 407, 409-428, (2016) · Zbl 1344.92116
[71] Jaenike, J.; Holt, R. D., Genetic variation for habitat preference - evidence and explanations, Am. Nat., 137, S67-S90, (1991)
[72] Johnson, M. L.; Gaines, M. S., Evolution of dispersal: theoretical models and empirical tests using birds and mammals, Annu. Rev. Ecol. Syst., 21, 449-480, (1990)
[73] Karisto, P.; Kisdi, E., Evolution of dispersal under variable connectivity, J. Theor. Biol., 419, 52-65, (2017) · Zbl 1370.92107
[74] Karonen, I., Stable coexistence in a lattice model of spatial competition with two site types, J. Theor. Biol., 295, 77-85, (2011) · Zbl 1336.92070
[75] Kisdi, E., Conditional dispersal under kin competition: extension of the Hamilton-may model to brood size-dependent dispersal, Theor. Popul. Biol., 66, 369-380, (2004) · Zbl 1073.92030
[76] Kisdi, E., Dispersal polymorphism in stable habitats, J. Theor. Biol., 392, 69-82, (2016) · Zbl 1347.92052
[77] Kisdi, E.; Geritz, S. A.H., Adaptive dynamics in allele space: evolution of genetic polymorphism by small mutations in a heterogeneous environment, Evolution, 53, 993-1008, (1999)
[78] Kisdi, E.; Jacobs, F. J.A.; Geritz, S. A.H., Red queen evolution by cycles of evolutionary branching and extinction, Selection, 2, 161-176, (2001)
[79] Leimar, O., Evolutionary change and Darwinian demons, Selection, 1-2, 65-72, (2001)
[80] Leimar, O., The evolution of phenotypic polymorphism: randomized strategies versus evolutionary branching, Am. Nat., 165, 669-681, (2005)
[81] Leimar, O., Multidimensional convergence stability, Evol. Ecol. Res., 11, 191-208, (2009)
[82] Levin, S. A.; Muller-Landau, H. C.; Nathan, R.; Chave, J., The ecology and evolution of seed dispersal: a theoretical perspective, Annu. Rev. Ecol. Evol. Syst., 34, 575-604, (2003)
[83] Mabry, K. E.; Stamps, J. A., Searching for a new home: decision making by dispersing brush mice., Am. Nat., 172, 625-634, (2008)
[84] Massol, F.; Duputie, A.; David, P.; Jarne, P., Asymmetric patch size distribution leads to disruptive selection on dispersal, Evolution, 65, 490-500, (2011)
[85] Mathias, A.; Kisdi, E.; Olivieri, I., Divergent evolution of dispersal in a heterogeneous landscape, Evolution, 55, 246-259, (2001)
[86] McPeek, M. A.; Holt, R. D., The evolution of dispersal in spatially and temporally varying environments, Am. Nat., 140, 1010-1027, (1992)
[87] Meszéna, G.; Gyllenberg, M.; Jacobs, F. J.; Metz, J. A.J., Link between population dynamics and dynamics of Darwinian evolution, Phys. Rev. Lett., 95, 078105, (2005)
[88] Metz, J. A.J.; Geritz, S. A.H.; Meszéna, G.; Jacobs, F. J.A.; Heerwaarden, J. S., Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction, IIASA Stud. Adapt. Dyn., 1, 1-42, (1996) · Zbl 0972.92024
[89] Metz, J. A.J.; Gyllenberg, M., How should we define fitness in structured metapopulation models? including an application to the calculation of evolutionarily stable dispersal strategies, Proc. R. Soc. Lond. B, 268, 499-508, (2001)
[90] Metz, J. A.J.; de Kovel, C. G.F., The canonical equation of adaptive dynamics for Mendelian diploids and haplo-diploids, Interf. Focus, 3, (2013)
[91] Metz, J. A.J.; Nisbet, R. M.; Geritz, S. A.H., How should we define fitness for general ecological scenarios?, Trends Ecol. Evol., 7, 198-202, (1992)
[92] Mullon, C.; Keller, L.; Laurent, L., Evolutionary stability of jointly evolving traits in subdivided populations, Am. Nat., 188, 175-195, (2016)
[93] Nonaka, E.; Parvinen, K.; Brännström, A., Evolutionary suicide as a consequence of runaway selection for greater aggregation tendency., J. Theor. Biol., 317, 96-104, (2013) · Zbl 1422.92100
[94] Nurmi, T.; Parvinen, K., On the evolution of specialization with a mechanistic underpinning in metapopulations, Theor. Pop. Biol., 73, 222-243, (2008) · Zbl 1208.92052
[95] Nurmi, T.; Parvinen, K., Joint evolution of specialization and dispersal in structured metapopulations, J. Theor. Biol., 275, 78-92, (2011) · Zbl 1405.92202
[96] Nurmi, T.; Parvinen, K., Evolution of specialization under non-equilibrium population dynamics, J. Theor. Biol., 321, 63-77, (2013) · Zbl 1342.91027
[97] Nurmi, T.; Parvinen, K.; Selonen, V., Evolution of site selection during dispersal, J. Theor. Biol., 425, 11-22, (2017) · Zbl 1381.92063
[98] Olivieri, I.; Michalakis, Y.; Gouyon, P.-H., Metapopulation genetics and the evolution of dispersal, Am. Nat., 146, 202-228, (1995)
[99] Pal, N.; Samantha, S.; Chattopadhyay, J., The impact of diffusive migration on ecosystem stability, Chaos Soliton Fract, 78, 317-328, (2015) · Zbl 1353.92083
[100] Parvinen, K., Evolution of migration in a metapopulation, Bull. Math. Biol., 61, 531-550, (1999) · Zbl 1323.92183
[101] Parvinen, K., Evolutionary branching of dispersal strategies in structured metapopulations, J. Math. Biol., 45, 106-124, (2002) · Zbl 1012.92030
[102] Parvinen, K., Evolutionary suicide, Acta Biotheor., 53, 241-264, (2005)
[103] Parvinen, K., Evolution of dispersal in a structured metapopulation model in discrete time, Bull. Math. Biol., 68, 655-678, (2006) · Zbl 1334.92360
[104] Parvinen, K., Evolutionary suicide in a discrete time metapopulation model, Evol. Ecol. Res., 9, 619-633, (2007)
[105] Parvinen, K., Adaptive dynamics of altruistic cooperation in a metapopulation: evolutionary emergence of cooperators and defectors or evolutionary suicide?, Bull. Math. Biol., 73, 2605-2626, (2011) · Zbl 1334.92361
[106] Parvinen, K.; Brännström, A., Evolution of site-selection stabilizes population dynamics, promotes even distribution of individuals, and occasionally causes evolutionary suicide, Bull. Math. Biol., 78, 1749-1772, (2016) · Zbl 1358.92070
[107] Parvinen, K.; Dieckmann, U.; Gyllenberg, M.; Metz, J. A.J., Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity, J. Evol. Biol., 16, 143-153, (2003)
[108] Parvinen, K.; Metz, J. A.J., A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution, Theor. Popul. Biol., 73, 517-528, (2008) · Zbl 1210.92025
[109] Parvinen, K.; Ohtsuki, H.; Wakano, J., The effect of fecundity derivatives on the condition of evolutionary branching in spatial models, J. Theor. Biol., 416, 129-143, (2017) · Zbl 1368.92124
[110] Parvinen, K.; Seppänen, A., On fitness in metapopulations that are both size- and stage-structured, J. Math. Biol., 73, 903-917, (2016) · Zbl 1360.92078
[111] Parvinen, K.; Seppänen, A.; Nagy, J. D., Evolution of complex density-dependent dispersal strategies, Bull. Math. Biol., 74, 2622-2649, (2012) · Zbl 1267.92052
[112] Pelletier, F.; Clutton-Brock, T.; Pemberton, J.; Tuljapurkar, S.; Coulson, T., The evolutionary demography of ecological change: linking trait variation and population growth, Science, 315, 1571-1574, (2007)
[113] Pelletier, F.; Garant, D.; Hendry, A. P., Eco-evolutionary dynamics, Phil. Trans. R. Soc. Lond. B Biol. Sci., 364, 1483-1489, (2009)
[114] Perkins, T. A.; Boettiger, C.; Phillips, B. J., After the game is over: life-history trade-offs drive dispersal attenuation following range expansion, Ecol. Evol., 6, 6425-6434, (2016)
[115] Perkins, T. A.; Phillips, B. J.; Baskett, M. L.; Hastings, A., Evolution of dispersal and life history interact to drive accelerating spread of invasive species, Ecol. Lett., 16, 1079-1087, (2013)
[116] Poethke, H. J.; Gros, A.; Hovestadt, T., The ability of individuals to assess population density influences the evolution of emigration propensity and dispersal distance, J. Theor. Biol., 282, 93-99, (2011)
[117] Poethke, H. J.; Hovestadt, T., Evolution of density- and patch-size-dependent dispersal rates, Proc. R. Soc. Lond. B, 269, 637-645, (2002)
[118] Post, D. M.; Palkovacs, E. P., Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play, Phil. Trans. R. Soc. Lond. B Biol. Sci., 364, 1629-1640, (2009)
[119] Pulliam, H. R., Sources, sinks and population regulation, Am. Nat., 132, 652-661, (1988)
[120] Pulliam, H. R.; Danielson, B. J., Sources, sinks and habitat selection: A landscape perspective on population dynamics, Am. Nat., 137, S50-S66, (1991)
[121] Pyke, G., Optimal foraging theory: A critical review, Annu. Rev. Ecol. Syst., 15, 523-575, (1984)
[122] Ravigné, V.; Dieckmann, U.; Olivieri, I., Live where you thrive: joint evolution of habitat choice and local adaptation facilitates specialization and promotes diversity, Am. Nat., 174, E141-E169, (2009)
[123] Reed, J. M.; Bouliner, T.; Danchin, E.; Oring, L. W., Informed dispersal: prospecting by birds for breeding sites, (Nolan, V.; Ketterson, E. D.; Thompson, C. F., Current Ornithology, Vol. 15, (1999), Kluwer Academic / Plenum Publishers), 193-259
[124] Remm, J.; Hanski, I. K.; Tuominen, S.; Selonen, V., Multilevel landscape utilization of the Siberian flying squirrel: scale effects on species habitat use, Ecol. Evol., 7, 8303-8315, (2017)
[125] Ricker, W. E., Stock and recruitment, J. Fish. Res. Bd. Canada, 11, 559-623, (1954)
[126] Ronce, O., How does it feel to be like a rolling stone? ten questions about dispersal evolution, Annu. Rev. Ecol. Syst., 38, 231-253, (2007)
[127] Ronce, O.; Kirkpatrick, M., When sources become sinks: migrational meltdown in heterogeneous habitats, Evolution, 55, 1520-1531, (2001)
[128] Ronce, O.; Perret, F.; Olivieri, I., Evolutionarily stable dispersal rates do not always increase with local extinction rates, Am. Nat., 155, 485-496, (2000)
[129] Rosenzweig, M., A theory of habitat selection, Ecology, 62, 327-335, (1981)
[130] Rosenzweig, M., Habitat selection as a source of biological diversity, Evol. Ecol., 1, 315-330, (1987)
[131] Rosenzweig, M., Habitat selection and population interactions: the search for mechanism, Am. Nat., 137, S5-S28, (1991)
[132] Rousset, F.; Billiard, S., A theoretical basis for measures of kin selection in subdivided populations: nite populations and localized dispersal, J. Evol. Biol., 13, 814-825, (2000)
[133] Rousset, F.; Ronce, O., Inclusive fitness for traits affecting metapopulation demography, Theor. Popul. Biol., 65, 127-141, (2004) · Zbl 1106.92056
[134] Rueffler, C.; Egas, M.; Metz, J. A.J., Evolutionary predictions should be based on individual-level traits, Am. Nat., 168, E148-E162, (2006)
[135] Schoener, T. W., The newest synthesis: understanding the interplay of evolutionary and ecological dynamics, Science, 331, 426-429, (2011)
[136] Schreiber, S., The evolution of patch selection in stochastic environments, Am. Nat., 180, 17-34, (2012)
[137] Schtickzelle, N.; Joiris, A.; Van Dyck, H.; Baguette, M., Quantitative analysis of change s in movement behaviour within and outside habitat in a specialist butterfly, BMC Evol. Biol., 7:4, (2007)
[138] Selonen, V.; Hanski, I. K., Decision making in dispersing Siberian flying squirrels, Behav. Ecol., 21, 219-225, (2010)
[139] Selonen, V.; Wistbacka, R., Role of breeding and natal movements in lifetime dispersal of a forest-dwelling rodent, Ecol. Evol., 7, 2204-2213, (2017)
[140] Shaw, A.; Kokko, H., Mate finding, allee effects and selection for sex-biased dispersal, J. Anim. Ecol., 83, 1256-1267, (2014)
[141] Shaw, A.; Kokko, H., Dispersal evolution in the presence of allee effects can speed up or slow down invasions, Am. Nat., 185, 631-639, (2015)
[142] Stamps, J. A., Habitat selection by dispersers: integrating proximate and ultimate approaches, (Clobert, J.; Danchin, E.; Dhondt, A.; Nichols, J., Dispersal, (2001), Oxford University Press), 230-242
[143] Stephens, P. A.; Sutherland, W. J.; Freckleton, R. P., What is the allee effect, Oikos, 87, 185-190, (1999)
[144] Taylor, P., An inclusive fitness model for dispersal of offspring, Theor. Pop. Biol., 130, 363-378, (1988)
[145] Travis, J. M.J.; Dytham, C., The evolution of dispersal in a metapopulation: a spatially explicit, individual-based model, Proc. R. Soc. Lond. B, 265, 17-23, (1998)
[146] Travis, J. M.J.; Dytham, C., Habitat persistence, habitat availability and the evolution of dispersal, Proc. R. Soc. Lond. B, 266, 723-728, (1999)
[147] Travis, J. M.J.; Dytham, C., Dispersal evolution during invasions, Evol. Ecol. Res., 4, 1119-1129, (2002)
[148] Travis, J. M.J.; Murrell, D. J.; Dytham, C., The evolution of density-dependent dispersal, Proc. R. Soc. Lond. B, 266, 1837-1842, (1999)
[149] Travis, J. M.J.; Mustin, K.; Barton, K. A.; Benton, T. G.; Clobert, J.; Delgado, M. M.; Dytham, C.; Hovestadt, T.; Palmer, S. C.F.; Van Dyck, H.; Bonte, D., Modelling dispersal: an eco-evolutionary framework incorporating emigration, movement, settlement behaviour and the multiple costs involved, Method Ecol Evol, 3, 628-641, (2012)
[150] Vangen, K. M.; Persson, J.; Landa, A.; Andersen, R.; Segerström, P., Characteristics of dispersal in wolverines, Can. J. Zool., 79, 1641-1649, (2001)
[151] Via, S., Ecological genetics and host adaptation in herbivorous insects: the experimental study of evolution in natural and agricultural systems, Annu. Rev. Entomol., 35, 421-446), (1990)
[152] Wakano, J.; Lehmann, L., Evolutionary branching in deme-structured populations, J. Theor. Biol., 351, 83-95, (2014) · Zbl 1412.92231
[153] Weigang, H., Coevolution of patch-type dependent emigration and patch-type dependent immigration, J. Theor. Biol., 426, 140-151, (2017) · Zbl 1381.92067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.