×

Evolution of complex density-dependent dispersal strategies. (English) Zbl 1267.92052

Summary: The question of how dispersal behavior is adaptive and how it responds to changes in the selection pressure is more relevant than ever, as anthropogenic habitat alteration and climate change accelerate around the world. In metapopulation models where local populations are large, and thus the local population size is measured in densities, density-dependent dispersal is expected to evolve to a single-threshold strategy, in which individuals stay in patches with local population density smaller than a threshold value and move immediately away from patches with local population density larger than the threshold. Fragmentation tends to convert continuous populations into metapopulations and also to decrease local population sizes. Therefore we analyze a metapopulation model, where each patch can support only a relatively small local population and thus experience demographic stochasticity. We investigated the evolution of density-dependent dispersal, emigration and immigration, in two scenarios: adult and natal dispersal. We show that density-dependent emigration can also evolve to a nonmonotone, “triple-threshold” strategy. This interesting phenomenon results from an interplay between the direct and indirect benefits of dispersal and the costs of dispersal. We also found that, compared to juveniles, dispersing adults may benefit more from density-dependent vs. density-independent dispersal strategies.

MSC:

92D15 Problems related to evolution
Full Text: DOI

References:

[1] Baguette, M., & Van Dyck, H. (2007). Landscape connectivity and animal behavior: functional grain as a key determinant for dispersal. Landsc. Ecol., 22, 1117–1129. · doi:10.1007/s10980-007-9108-4
[2] Balkau, B. J., & Feldman, M. W. (1973). Selection for migration modification. Genetics, 74, 171–174.
[3] Bull, J. J., Thompson, C., Ng, D., & Moore, R. (1987). A model for natural selection of genetic migration. Am. Nat., 129, 143–157. · doi:10.1086/284626
[4] Cadet, C., Ferrière, R., Metz, J. A. J., & van Baalen, M. (2003). The evolution of dispersal under demographic stochasticity. Am. Nat., 162, 427–441. · doi:10.1086/378213
[5] Chitty, D. (1967). The natural selection of self-regulatory behavior in animal populations. Proc. Ecol. Soc. Aust., 2, 51–78.
[6] Comins, H. N. (1985). Evolutionarily stable dispersal strategies for localized dispersal in two dimensions. J. Theor. Biol., 94, 579–606. · doi:10.1016/0022-5193(82)90302-2
[7] Comins, H. N., Hamilton, W. D., & May, R. M. (1980). Evolutionarily stable dispersal strategies. J. Theor. Biol., 82, 205–230. · doi:10.1016/0022-5193(80)90099-5
[8] Dieckmann, U., & Law, R. (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol., 34, 579–612. · Zbl 0845.92013 · doi:10.1007/BF02409751
[9] Dieckmann, U., Heino, M., & Parvinen, K. (2006). The adaptive dynamics of function-valued traits. J. Theor. Biol., 241, 370–389. · Zbl 1091.92054 · doi:10.1016/j.jtbi.2005.12.002
[10] Dobson, F. S., & Jones, W. T. (1985). Multiple causes of dispersal. Am. Nat., 126, 855–858. · doi:10.1086/284457
[11] Doebeli, M., & Ruxton, G. D. (1997). Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolution, 51, 1730–1741. · doi:10.2307/2410996
[12] Durinx, M., Metz, J. A. J., & Meszéna, G. (2008). Adaptive dynamics for physiologically structured population models. J. Math. Biol., 56, 673–742. · Zbl 1146.92027 · doi:10.1007/s00285-007-0134-2
[13] Errington, P. L. (1946). Predation and vertebrate populations. Q. Rev. Biol., 21, 144–177. · doi:10.1086/395220
[14] Gandon, S., & Michalakis, Y. (2001). Multiple causes of the evolution of dispersal. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.), Dispersal (pp. 155–167). London: Oxford University Press.
[15] Geritz, S. A. H., Metz, J. A. J., Kisdi, É., & Meszéna, G. (1997). Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett., 78, 2024–2027. · doi:10.1103/PhysRevLett.78.2024
[16] Geritz, S. A. H., Kisdi, É., Meszéna, G., & Metz, J. A. J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12, 35–57. · doi:10.1023/A:1006554906681
[17] Geritz, S., Gyllenberg, M., & Ondráček, P. (2009). Evolution of density-dependent dispersal in a structured metapopulation. Math. Biosci., 219, 142–148. · Zbl 1168.92039 · doi:10.1016/j.mbs.2009.03.006
[18] Greenwood, P. J., Harvey, P. H., & Perrins, C. M. (1978). Inbreeding and dispersal in great tit. Nature, 271, 52–54. · doi:10.1038/271052a0
[19] Gyllenberg, M., & Metz, J. A. J. (2001). On fitness in structured metapopulations. J. Math. Biol., 43, 545–560. · Zbl 0995.92034 · doi:10.1007/s002850100113
[20] Gyllenberg, M., Parvinen, K., & Dieckmann, U. (2002). Evolutionary suicide and evolution of dispersal in structured metapopulations. J. Math. Biol., 45, 79–105. · Zbl 1014.92025 · doi:10.1007/s002850200151
[21] Gyllenberg, M., Kisdi, E., & Utz, M. (2008). Evolution of condition-dependent dispersal under kin competition. J. Math. Biol., 57(2), 285–307. · Zbl 1141.92030 · doi:10.1007/s00285-008-0158-2
[22] Gyllenberg, M., Kisdi, É., & Utz, M. (2011a). Body condition dependent dispersal in a heterogeneous environment. Theor. Popul. Biol., 79, 139–154. · Zbl 1338.92104 · doi:10.1016/j.tpb.2011.02.004
[23] Gyllenberg, M., Kisdi, É., & Utz, M. (2011b). Variability within families and the evolution of body condition dependent dispersal. J. Biol. Dyn., 5, 191–211. · Zbl 1403.92176 · doi:10.1080/17513758.2010.519403
[24] Hamilton, W. D. (1964a). The genetical evolution of social behaviour. I. J. Theor. Biol., 7, 1–16. · doi:10.1016/0022-5193(64)90038-4
[25] Hamilton, W. D. (1964b). The genetical evolution of social behaviour. II. J. Theor. Biol., 7, 17–52. · doi:10.1016/0022-5193(64)90039-6
[26] Hamilton, W. D., & May, R. M. (1977). Dispersal in stable habitats. Nature, 269, 578–581. · doi:10.1038/269578a0
[27] Hanski, I. (2005). The shrinking world: ecological consequences of habitat loss. Oldendorf/Luhe: International Ecology Institute.
[28] Hanski, I., & Mononen, T. (2011). Eco-evolutionary dynamics of dispersal in spatially heterogeneous environments. Ecol. Lett., 14, 1025–1034. · doi:10.1111/j.1461-0248.2011.01671.x
[29] Hastings, A. (1983). Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol., 24, 244–251. · Zbl 0526.92025 · doi:10.1016/0040-5809(83)90027-8
[30] Hepburn, H. R. (2006). Absconding, migration and swarming in honeybees: an ecological and evolutionary perspective. In V. E. Kipyatkov (Ed.), Life cycles in social insects: behaviour, ecology and evolution (pp. 121–135). St. Petersburg: St. Petersburg University Press.
[31] Holt, R. D. (1985). Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor. Popul. Biol., 28, 181–208. · Zbl 0584.92022 · doi:10.1016/0040-5809(85)90027-9
[32] Holt, R. D., & McPeek, M. (1996). Chaotic population dynamics favors the evolution of dispersal. Am. Nat., 148, 709–718. · doi:10.1086/285949
[33] Kisdi, É. (2002). Dispersal: risk spreading versus local adaptation. Am. Nat., 159, 579–596. · doi:10.1086/339989
[34] Kisdi, É. (2004). Conditional dispersal under kin competition: extension of the Hamilton–May model brood size-dependent dispersal. Theor. Popul. Biol., 66, 369–380. · Zbl 1073.92030 · doi:10.1016/j.tpb.2004.06.009
[35] Korona, R. (1991). Genetic-basis of behavioral strategies–dispersal of female flour beetles, Tribolium confusum, in a laboratory system. Oikos, 62(3), 265–270. · doi:10.2307/3545490
[36] Krebs, C. J., Wingate, I., Leduc, J., Redfield, J., Taitt, M., & Hilborn, R. (1976). Microtus population biology–dispersal in fluctuating populations of Microtus townsendii. Can. J. Zool., 54, 79–95. · doi:10.1139/z76-009
[37] Kuno, E. (1981). Dispersal and the persistence of populations in unstable habitats: a theoretical note. Oecologia, 49, 123–126. · doi:10.1007/BF00376909
[38] Lack, D. (1966). Population studies of birds. Oxford: Oxford University Press.
[39] Lambin, X., Aars, J., & Piertney, S. B. (2001). Dispersal, intraspecific competition, kin competition and kin facilitation: a review of the empirical evidence. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.), Dispersal (pp. 110–122). London: Oxford University Press.
[40] Lawson-Handley, L. J., & Perrin, N. (2007). Advances in our understanding of mammalian sex-biased dispersal. Mol. Ecol., 16, 1559–1578. · doi:10.1111/j.1365-294X.2006.03152.x
[41] Le Galliard, J.-F., Ferriére, R., & Dieckmann, U. (2005). Adaptive evolution of social traits: origin, trajectories and correlations of altruism and mobility. Am. Nat., 165, 206–224. · doi:10.1086/427090
[42] Matthysen, E. (2005). Density-dependent dispersal in birds and mammals. Ecography, 28, 403–416. · doi:10.1111/j.0906-7590.2005.04073.x
[43] Mayr, E. (1963). Animal species and evolution. London: Oxford University Press.
[44] Metz, J. A. J., & Gyllenberg, M. (2001). How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proc. R. Soc. Lond. B, Biol. Sci., 268, 499–508. · doi:10.1098/rspb.2000.1373
[45] Metz, J. A. J., Jong, T. J., & Klinkhamer, P. G. L. (1983). What are the advantages of dispersing: a paper by Kuno explained and extended. Oecologia, 57, 166–169. · doi:10.1007/BF00379576
[46] Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define ”fitness” for general ecological scenarios? Trends Ecol. Evol., 7, 198–202. · doi:10.1016/0169-5347(92)90073-K
[47] Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. J. A., & van Heerwaarden, J. S. (1996). Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In S. J. van Strien & S. M. Verduyn Lunel (Eds.), Stochastic and spatial structures of dynamical systems (pp. 183–231). Amsterdam: North-Holland. · Zbl 0972.92024
[48] Moore, J., & Ali, R. (1982). Are dispersal and inbreeding avoidance related? Anim. Behav., 32, 94–112. · doi:10.1016/S0003-3472(84)80328-0
[49] Motro, U. (1982a). Optimal rates of dispersal I. Haploid populations. Theor. Popul. Biol., 21, 394–411. · Zbl 0513.92009 · doi:10.1016/0040-5809(82)90026-0
[50] Motro, U. (1982b). Optimal rates of dispersal II. Diploid populations. Theor. Popul. Biol., 21, 412–429. · Zbl 0513.92010 · doi:10.1016/0040-5809(82)90027-2
[51] Motro, U. (1983). Optimal rates of dispersal III. Parent offspring conflict. Theor. Popul. Biol., 23, 159–168. · Zbl 0513.92011 · doi:10.1016/0040-5809(83)90011-4
[52] Nagy, J. D. (1996). Evolutionarily attracting dispersal strategies in vertebrate metapopulations. Ph.D. thesis, Arizona State University, Tempe, AZ, USA.
[53] Nurmi, T., & Parvinen, K. (2011). Joint evolution of specialization and dispersal in structured metapopulations. J. Theor. Biol., 275, 78–92. · Zbl 1405.92202 · doi:10.1016/j.jtbi.2011.01.023
[54] Ogden, J. C. (1970a). Artificial selection for dispersal in flour beetles (tenebrionidae: Tribolium). Ecology, 51, 130–133. · doi:10.2307/1933606
[55] Ogden, J. C. (1970b). Aspects of dispersal in tribolium flour beetles. Physiol. Zool., 42, 124–131.
[56] Parvinen, K. (1999). Evolution of migration in a metapopulation. Bull. Math. Biol., 61, 531–550. · Zbl 1323.92183 · doi:10.1006/bulm.1999.0100
[57] Parvinen, K. (2002). Evolutionary branching of dispersal strategies in structured metapopulations. J. Math. Biol., 45, 106–124. · Zbl 1012.92030 · doi:10.1007/s002850200150
[58] Parvinen, K. (2006). Evolution of dispersal in a structured metapopulation model in discrete time. Bull. Math. Biol., 68, 655–678. · Zbl 1334.92360 · doi:10.1007/s11538-005-9040-1
[59] Parvinen, K. (2011). Adaptive dynamics of altruistic cooperation in a metapopulation: evolutionary emergence of cooperators and defectors or evolutionary suicide? Bull. Math. Biol., 73, 2605–2626. · Zbl 1334.92361 · doi:10.1007/s11538-011-9638-4
[60] Parvinen, K., & Metz, J. A. J. (2008). A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution. Theor. Popul. Biol., 73, 517–528. · Zbl 1210.92025 · doi:10.1016/j.tpb.2008.01.002
[61] Parvinen, K., Dieckmann, U., Gyllenberg, M., & Metz, J. A. J. (2003). Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J. Evol. Biol., 16, 143–153. · doi:10.1046/j.1420-9101.2003.00478.x
[62] Parvinen, K., Dieckmann, U., & Heino, M. (2006). Function-valued adaptive dynamics and the calculus of variations. J. Math. Biol., 52, 1–26. · Zbl 1091.92054 · doi:10.1007/s00285-005-0329-3
[63] Parvinen, K., Heino, M., & Dieckmann, U. (2012). Function-valued adaptive dynamics and optimal control theory. J. Math. Biol. doi: 10.1007/s00285-012-0549-2 . · Zbl 1271.92025
[64] Peacock, M. M., & Smith, A. T. (1997). The effect of habitat fragmentation on dispersal patterns, mating behavior, and genetic variation in a pika (Ochotona princeps) metapopulation. Oecologia, 112, 524–533. · doi:10.1007/s004420050341
[65] Perrin, N., & Goudet, J. (2001). Inbreeding, kinship, and the evolution of natal dispersal. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.), Dispersal (pp. 123–142). London: Oxford University Press.
[66] Perrins, C. (2008). Survival of young swifts in relation to brood size. Nature, 201, 1147–1148. · doi:10.1038/2011147b0
[67] Roff, D. (1977). Dispersal in dipterans–its costs and consequences. J. Anim. Ecol., 46, 443–456. · doi:10.2307/3822
[68] Roff, D. A., & Fairbairn, D. J. (2001). The genetic basis of dispersal and migration, and its consequences for the evolution of correlated traits. In J. Clobert, E. Danchin, A. A. Dhondt, & J. D. Nichols (Eds.), Dispersal (pp. 191–202). London: Oxford University Press.
[69] Ronce, O., & Olivieri, I. (2004). Life history evolution in metapopulations. In I. Hanski & O. E. Gaggiotti (Eds.), Ecology, genetics, and evolution of metapopulations (pp. 227–257). Amsterdam: Elsevier.
[70] Ronce, O., Perret, F., & Olivieri, I. (2000a). Evolutionarily stable dispersal rates do not always increase with local extinction rates. Am. Nat., 155, 485–496. · doi:10.1086/303341
[71] Ronce, O., Perret, F., & Olivieri, I. (2000b). Landscape dynamics and evolution of colonizer syndromes: interactions between reproductive effort and dispersal in a metapopulation. Evol. Ecol., 14, 233–260. · doi:10.1023/A:1011068005057
[72] Smith, A. T. (1974a). The distribution and dispersal of pikas: consequences of insular population structure. Ecology, 55, 1112–1119. · doi:10.2307/1940361
[73] Smith, A. T. (1974b). The distribution and dispersal of pikas: influences of behaviour and climate. Ecology, 55, 1368–1376. · doi:10.2307/1935464
[74] Smith, A. T. (1980). Temporal changes in insular populations of the pika (ochotona princeps). Ecology, 61, 8–13. · doi:10.2307/1937147
[75] Teague, R. (1977). A model of migration modification. Theor. Popul. Biol., 12, 86–94. · Zbl 0384.92008 · doi:10.1016/0040-5809(77)90036-3
[76] Van Valen, L. (1971). Group selection and the evolution of dispersal. Evolution, 25, 591–598. · doi:10.2307/2406942
[77] Williams, G. C. (1966). Adaptation and natural selection. Princeton: Princeton University Press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.