×

The effect of fecundity derivatives on the condition of evolutionary branching in spatial models. (English) Zbl 1368.92124

Summary: By investigating metapopulation fitness, we present analytical expressions for the selection gradient and conditions for convergence stability and evolutionary stability in Wright’s island model in terms of fecundity function. Coefficients of each derivative of fecundity function appearing in these conditions have fixed signs. This illustrates which kind of interaction promotes or inhibits evolutionary branching in spatial models. We observe that Taylor’s cancellation result holds for any fecundity function: Not only singular strategies but also their convergence stability is identical to that in the corresponding well-mixed model. We show that evolutionary branching never occurs when the dispersal rate is close to zero. Furthermore, for a wide class of fecundity functions (including those determined by any pairwise game), evolutionary branching is impossible for any dispersal rate if branching does not occur in the corresponding well-mixed model. Spatial structure thus often inhibits evolutionary branching, although we can construct a fecundity function for which evolutionary branching only occurs for intermediate dispersal rates.

MSC:

92D15 Problems related to evolution
92D25 Population dynamics (general)

References:

[1] Ajar, É., Analysis of disruptive selection in subdivided populations, BMC Evolut. Biol., 3, 22, 1-12 (2003)
[2] Alizon, S.; Taylor, P., Empty sites can promote altruistic behavior, Evolution, 62, 1335-1344 (2008)
[3] Caswell, H., Matrix Population Models: Construction, Analysis, and Interpretation (2000), Sinauer Associates: Sinauer Associates Sunderland, Massachusetts
[4] Christiansen, F. B., On conditions for evolutionary stability for a continuously varying character, Am. Nat., 138, 37-50 (1991)
[5] Doebeli, M.; Hauert, C.; Killingback, T., The evolutionary origin of cooperators and defectors, Science, 306, 859-862 (2004)
[6] Gardner, A.; West, S. A., Demography, altruism, and the benefits of budding, J. Evol. Biol., 19, 1707-1716 (2006)
[7] Geritz, S. A.H.; Kisdi, É.; Meszéna, G.; Metz, J. A.J., Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12, 35-57 (1998)
[8] Geritz, S. A.H.; Metz, J. A.J.; Kisdi, É.; Meszéna, G., Dynamics of adaptation and evolutionary branching, Phys. Rev. Lett., 78, 2024-2027 (1997)
[9] Gyllenberg, M.; Metz, J. A.J., On fitness in structured metapopulations, J. Math. Biol., 43, 545-560 (2001) · Zbl 0995.92034
[10] Heinz, S. K.; Mazzucco, R.; Dieckmann, U., Speciation and the evolution of dispersal along environmental gradients, Evol. Ecol., 23, 53-70 (2009)
[11] Lehmann, L.; Keller, L.; Sumpter, D. J.T., The evolution of helping and harming on graphs: the return of the inclusive fitness effect, J. Evol. Biol., 20, 2284-2295 (2007)
[12] Lehmann, L.; Mullon, C.; Akçay, E.; Van Cleve, J., Invasion fitness, inclusive fitness, and reproductive numbers in heterogeneous populations, Evolution, 70, 1689-1702 (2016)
[13] Lehmann, L.; Rousset, F., How life history and demography promote or inhibit the evolution of helping behaviours, Philos. Trans. R. Soc. B, 365, 2599-2617 (2010)
[14] Metz, J. A.J.; Geritz, S. A.H.; Meszéna, G.; Jacobs, F. J.A.; van Heerwaarden, J. S., Adaptive dynamics, a geometrical study of the consequenses of nearly faithful reproduction, (van Strien, S. J.; Verduyn Lunel, S. M., Stochastic and Spatial Structures of Dynamical Systems (1996), North-Holland: North-Holland Amsterdam), 183-231 · Zbl 0972.92024
[15] Metz, J. A.J.; Gyllenberg, M., How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies, Proc. R. Soc. Lond. B, 268, 499-508 (2001)
[16] Metz, J. A.J.; Nisbet, R. M.; Geritz, S. A.H., How should we define “fitness” for general ecological scenarios?, Trends Ecol. Evol., 7, 198-202 (1992)
[17] Mullon, C.; Keller, L.; Lehmann, L., Evolutionary stability of jointly evolving traits in subdivided populations, Am. Nat., 188, 175-195 (2016)
[18] Nurmi, T.; Parvinen, K., On the evolution of specialization with a mechanistic underpinning in structured metapopulations, Theor. Popul. Biol., 73, 222-243 (2008) · Zbl 1208.92052
[19] Nurmi, T.; Parvinen, K., Joint evolution of specialization and dispersal in structured metapopulations, J. Theor. Biol., 275, 78-92 (2011) · Zbl 1405.92202
[20] Ohtsuki, H., Does synergy rescue the evolution of cooperation? An analysis for homogeneous populations with non-overlapping generations, J. Theor. Biol., 307, 20-28 (2012) · Zbl 1337.92191
[21] Parvinen, K., Evolutionary branching of dispersal strategies in structured metapopulations, J. Math. Biol., 45, 106-124 (2002) · Zbl 1012.92030
[22] Parvinen, K., Evolution of dispersal in a structured metapopulation model in discrete time, Bull. Math. Biol., 68, 655-678 (2006) · Zbl 1334.92360
[23] Parvinen, K., Adaptive dynamics of cooperation may prevent the coexistence of defectors and cooperators and even cause extinction, Proc. R. Soc. Lond. B, 277, 2493-2501 (2010)
[24] Parvinen, K., Adaptive dynamics of altruistic cooperation in a metapopulation: evolutionary emergence of cooperators and defectors or evolutionary suicide?, Bull. Math. Biol., 73, 2605-2626 (2011) · Zbl 1334.92361
[25] Parvinen, K.; Metz, J. A.J., A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution, Theor. Popul. Biol., 73, 517-528 (2008) · Zbl 1210.92025
[26] Payne, J. L.; Mazzucco, R.; Dieckmann, U., The evolution of conditional dispersal and reproductive isolation along environmental gradients, J. Theor. Biol., 273, 147-155 (2011) · Zbl 1405.92203
[27] Queller, D. C., Does population viscosity promote kin selection?, Trends Ecol. Evol., 7, 322-324 (1992)
[28] Rousset, F., Genetic Structure and Selection in Subdivided Populations (2004), Princeton University Press: Princeton University Press Princeton
[29] Sasaki, A.; Dieckmann, U., Oligomorphic dynamics for analyzing the quantitative genetics of adaptive speciation, J. Math. Biol., 63, 601-635 (2011) · Zbl 1311.92125
[30] Seppänen, A.; Parvinen, K., Evolution of density-dependent cooperation, Bull. Math. Biol., 76, 3070-3087 (2014) · Zbl 1329.92019
[31] Sigmund, K., The Calculus of Selfishness (2010), Princeton University Press: Princeton University Press Princeton, New Jersey · Zbl 1189.91010
[32] Taylor, P. D., Altruism in viscous populations - an inclusive fitness model, Evol. Ecol., 6, 352-356 (1992)
[33] Taylor, P. D., Inclusive fitness in a homogeneous environment, Proc. R. Soc. Lond. B, 249, 299-302 (1992)
[34] Taylor, P. D.; Irwin, A. J., Overlapping generations can promote altruistic behavior, Evolution, 54, 1135-1141 (2000)
[35] Taylor, P. D.; Lillicrap, T.; Cownden, D., Inclusive fitness analysis on mathematical groups, Evolution, 65, 849-859 (2011)
[36] Wakano, J.; Lehmann, L., Evolutionary branching in deme-structured populations, J. Theor. Biol., 351, 83-95 (2014) · Zbl 1412.92231
[37] Wakano, J. Y.; Iwasa, Y., Evolutionary branching in a finite population: deterministic branching vs. stochastic branching, Genetics, 193, 229-241 (2012)
[38] West, S. A.; Gardner, A., Altruism, spite, and greenbeards, Science, 327, 1341-1344 (2010)
[39] Wilson, D. S.; Pollock, G. B.; Dugatkin, L. A., Can altruism evolve in a purely viscous population?, Evol. Ecol., 6, 331-341 (1992)
[40] Wright, S., Evolution in mendelian populations, Genetics, 16, 97-159 (1931)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.