×

On the Korn interpolation and second inequalities in thin domains. (English) Zbl 1397.35304

Summary: We consider shells of nonconstant thickness in three dimensional Euclidean space around surfaces which have bounded principal curvatures. We derive Korn’s interpolation inequality (or the so-called first (and a half) inequality introduced in our work with Y. Grabovsky [ibid. 46, No. 5, 3277–3295 (2014; Zbl 1307.74049)]) and Korn’s second inequality on such domains for \(\mathbf{u}\in H^1\) vector fields, imposing no boundary or normalization conditions on \(\mathbf{u}\). The constants in the estimates are asymptotically optimal in terms of the domain thickness \(h\), with the leading order constant having the scaling \(h\) as \(h\to 0\). This is the first work that determines the asymptotics of the optimal constant in the classical Korn second inequality for shells in terms of the domain thickness in almost full generality, the inequality being fulfilled for practically all thin domains \(\Omega\in\mathbb{R}^3\) and all vector fields \(\mathbf{u}\in H^1(\Omega)\). Moreover, Korn’s interpolation inequality is stronger than Korn’s second inequality, and it reduces the problem of estimating the gradient \(\nabla\mathbf{u}\) in terms of the symmetrized gradient \(e(\mathbf{u})\), in particular, any linear geometric rigidity estimates for thin domains, to the easier problem of proving the corresponding Poincaré-like estimates on the field \(\mathbf{u}\) itself.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
35J65 Nonlinear boundary value problems for linear elliptic equations
74B05 Classical linear elasticity
74B20 Nonlinear elasticity
74K25 Shells

Citations:

Zbl 1307.74049

References:

[1] P. Bella, Transition between planar and wrinkled regions in uniaxially stretched thin elastic film, Arch. Ration. Mech. Anal., 216 (2015), pp. 623–672. · Zbl 1309.35161
[2] P. Bella and R.V. Kohn, Wrinkles as the result of compressive stresses in an annular thin film, Comm. Pure Appl. Math., 67 (2014), pp. 693–747. · Zbl 1302.74105
[3] P. Bella and R.V. Kohn, Metric-induced wrinkling of a thin elastic sheet, J. Nonlinear Sci., 24 (2014), pp. 1147–1176. · Zbl 1305.74061
[4] P. Bella and R.V. Kohn, The coarsening of folds in hanging drapes, Comm. Pure Appl. Math., 70 (2017), pp. 978–1012. · Zbl 1426.74215
[5] D. Blanchard and G. Griso, Decomposition of the deformation of a thin shell. Asymptotic behavior of the Green-St Venant’s strain tensor, J. Elasticity, 101 (2010), pp. 179–205. · Zbl 1258.74137
[6] D. Blanchard and G. Griso, Justification of a simplified model for shells in nonlinear elasticity, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 461–465. · Zbl 1258.74136
[7] P.G. Ciarlet, Introduction to Linear Shell Theory, Gauthier-Villars and Elsevier, Paris, 1998. · Zbl 0912.73001
[8] P.G. Ciarlet, Mathematical Elasticity, Vol. III: Theory of Shells, Stud. Math. Appl. 29, North-Holland, Amsterdam, 2000. · Zbl 0953.74004
[9] P.G. Ciarlet, Korn’s inequalities: The linear vs. the nonlinear case, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), pp. 473–483. · Zbl 1242.74009
[10] P.G. Ciarlet and C. Mardare, Nonlinear Korn inequalities, J. Math. Pures Appl. (9), 104 (2015), pp. 1119–1134. · Zbl 1337.35144
[11] P.G. Ciarlet and P. Rabier, Les Équations de von Kármán, Lecture Notes in Math. 826, Springer-Verlag, Berlin, 1980 (in French); Von Karman Equations, Mir, Moscow, 1983 (in Russian). · Zbl 0433.73019
[12] K.O. Friedrichs, On the boundary-value problems of the theory of elasticity and Korn’s inequality, Ann. of Math. (2), 48 (1947), pp. 441–471. · Zbl 0029.17002
[13] G. Friesecke, R.D. James, M.G. Mora, and S. Müller, Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence, C. R. Math. Acad. Sci. Paris, 336 (2003), pp. 697–702. · Zbl 1140.74481
[14] G. Friesecke, R.D. James, and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), pp. 1461–1506. · Zbl 1021.74024
[15] G. Friesecke, R.D. James, and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. Ration. Mech. Anal., 180 (2006), pp. 183–236. · Zbl 1100.74039
[16] Y. Grabovsky and D. Harutyunyan, Exact scaling exponents in Korn and Korn-type inequalities for cylindrical shells, SIAM J. Math. Anal., 46 (2014), pp. 3277–3295, . · Zbl 1307.74049
[17] Y. Grabovsky and D. Harutyunyan, Scaling instability of the buckling load in axially compressed circular cylindrical shells, J. Nonlinear Sci., 26 (2016), pp. 83–119. · Zbl 1331.74111
[18] Y. Grabovsky and D. Harutyunyan, Korn inequalities for shells with zero Gaussian curvature, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), pp. 267–282, . · Zbl 1395.74056
[19] Y. Grabovsky and L. Truskinovsky, The flip side of buckling, Contin. Mech. Thermodyn., 19 (2007), pp. 211–243. · Zbl 1160.74360
[20] D. Harutyunyan, New asymptotically sharp Korn and Korn-like inequalities in thin domains, J. Elasticity, 117 (2014), pp. 95–109. · Zbl 1306.35132
[21] D. Harutyunyan, Gaussian curvature as an identifier of shell rigidity, Arch. Ration. Mech. Anal., 226 (2017), pp. 743–766. · Zbl 1374.35400
[22] C.O. Horgan, Korn’s inequalities and their applications in continuum mechanics, SIAM Rev., 37 (1995), pp. 491–511, . · Zbl 0840.73010
[23] P. Hornung, M. Lewicka, and M.R. Pakzad, Infinitesimal isometries on developable surfaces and asymptotic theories for thin developable shells, J. Elasticity, 111 (2013), pp. 1–19. · Zbl 1322.74049
[24] P. Hornung and I. Velčić, Regularity of intrinsically convex \(W^{2,2}\) surfaces and a derivation of a homogenized bending theory of convex shells, J. Math. Pures Appl. (9), 115 (2018), pp. 1–23. · Zbl 1400.53046
[25] R.V. Kohn, New integral estimates for deformations in terms of their nonlinear strain, Arch. Rational Mech. Anal., 78 (1982), pp. 131–172. · Zbl 0491.73023
[26] R.V. Kohn and E. O’Brien, The wrinkling of a twisted ribbon, J. Nonlinear Sci., 28 (2018), pp. 1221–1249. · Zbl 1397.74079
[27] R.V. Kohn and M. Vogelius, A new model for thin plates with rapidly varying thickness. \textupII: A convergence proof, Quart. Appl. Math., 43 (1985), pp. 1–22. · Zbl 0565.73046
[28] V.A. Kondratiev and O.A. Oleinik, Boundary-value problems for the system of elasticity theory in unbounded domains. Korn’s inequalities, Uspekhi Mat. Nauk, 43 (1988), pp. 55–98. · Zbl 0661.73001
[29] V.A. Kondratiev and O.A. Oleinik, On Korn’s inequalities, C. R. Acad. Sci. Paris Sér. I Math., 308 (1989), pp. 483–487. · Zbl 0698.35067
[30] A. Korn, Solution générale du problème d’équilibre dans la théorie de l’élasticité dans le cas où les efforts sont donnés à la surface, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2), 10 (1908), pp. 165–269. · JFM 39.0853.03
[31] A. Korn, Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen, Bull. Int. Cracovie Akademie Umiejet, Classe des Sci. Math. Nat., (1909), pp. 705–724. · JFM 40.0884.02
[32] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl. (9), 74 (1995), pp. 549–578. · Zbl 0847.73025
[33] H. Le Dret and A. Raoult, The membrane shell model in nonlinear elasticity: A variational asymptotic derivation, J. Nonlinear Sci., 6 (1996), pp. 59–84. · Zbl 0844.73045
[34] M. Lewicka, L. Mahadevan, and M.R. Pakzad, The Monge-Ampère constraint: Matching of isometries, density and regularity, and elastic theories of shallow shells, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), pp. 45–67. · Zbl 1359.35085
[35] M. Lewicka, M.G. Mora, and M.R. Pakzad, Shell theories arising as low energy \(Γ\)-limit of \(3d\) nonlinear elasticity, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5), 9 (2010), pp. 253–295. · Zbl 1425.74298
[36] M. Lewicka and M.R. Pakzad, The infinite hierarchy of elastic shell models: Some recent results and a conjecture, in Infinite Dimensional Dynamical Systems, Fields Inst. Commun. 64, Springer, New York, 2013, pp. 407–420. · Zbl 1263.74035
[37] S. Müller, Mathematical problems in thin elastic sheets: Scaling limits, packing, crumpling and singularities, in Vector-Valued Partial Differential Equations and Applications, Lecture Notes in Math. 2179, Springer, Cham, 2017, pp. 125–193. · Zbl 1372.35003
[38] P.E. Tovstik and A.L. Smirnov, Asymptotic Methods in the Buckling Theory of Elastic Shells, Ser. Stab. Vib. Control Syst. Ser. A 4, World Scientific, River Edge, NJ, 2001. · Zbl 1066.74500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.