×

The flip side of buckling. (English) Zbl 1160.74360

Summary: Buckling of slender structures under compressive loading is a failure of infinitesimal stability due to a confluence of two factors: the energy density non-convexity and the smallness of Korn’s constant. The problem has been well understood only for bodies with simple geometries when the slenderness parameter is well defined. In this paper, we present the first rigorous analysis of buckling for bodies with complex geometry. By limiting our analysis to the “near-flip” instability, we address the universal features of the buckling phenomenon that depend on neither the shape of the domain nor the degree of constitutive nonlinearity of the elastic material.

MSC:

74G60 Bifurcation and buckling
Full Text: DOI

References:

[1] Beatty M.F. (1971). Estimation of ultimate safe loads in elastic stability theory. J. Elast. 1(2): 95–120 · doi:10.1007/BF00046462
[2] Berdichevsky V.L. (1983). Variational Principles of Continuum Mechanics. (Russian) Nauka, Moscow · Zbl 1189.49002
[3] Biot M.A. (1965). Mechanics of Incremental Deformations. Wiley, New York
[4] Budiansky B. (1974). Theory of buckling and post-buckling behavior of elastic structures. Adv. Appl. Mech. 14: 1–65 · doi:10.1016/S0065-2156(08)70030-9
[5] Capriz G. and Podio-Guidugli P. (1979). The role of Fredholm conditions in Signorini’s perturbation method. Arch. Ration. Mech. Anal. 70(3): 261–288 · Zbl 0433.73035 · doi:10.1007/BF00280537
[6] Chillingworth D.R.J., Marsden J.E. and Wan Y.H. (1982). Symmetry and bifurcation in three-dimensional elasticity. I. Arch. Ration. Mech. Anal. 80(4): 295–331 · Zbl 0509.73018 · doi:10.1007/BF00253119
[7] Ciarlet, P.G.: Mathematical elasticity. Vol. II, volume 27 of Studies in Mathematics and its Applications. North-Holland, Amsterdam (1997). Theory of plates · Zbl 0888.73001
[8] Ciarlet P.G. and Destuynder P. (1979). A justification of nonlinear model in plate theory. Comput. Methods Appl. Mech. Eng. 17(18): 227–258 · Zbl 0405.73050 · doi:10.1016/0045-7825(79)90089-6
[9] Davies P.J. (1991). Buckling and barrelling instabilities of non-linearly elastic columns. Q. Appl. Math. 49(3): 407–426 · Zbl 0738.73029
[10] Del Piero G. (1980). Lower bounds for the critical loads of elastic bodies. J. Elast. 10(2): 135–143 · Zbl 0437.73032 · doi:10.1007/BF00044499
[11] Del Piero, G., Rizzoni, R.: Two sided estimates for local minimizers in compressible elasticity. Preprint · Zbl 1423.74124
[12] Euler, L.: Additamentum I. De curvis elasticis. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti. Series prima Opera mathematica, 24, 231–297, Lausanne, 1744. Edited by Constantin Carathéodory, Birkhaüser, Bäsel, Switzerland, 1967. English translation by Oldfather, W. A., Ellis, C. A. and Brown, D. M. in Isis, 20(1), 72–160 (1933)
[13] Föppl, A.: In Vorlesungen über technische Mechanik, vol. 5, pp. 132–139. Leipzig (1907)
[14] Fosdick R.L. and Shield R.T. (1963). Small bending of a circular bar superposed on finite extension or compression. Arch. Ration. Mech. Anal. 12: 223–248 · Zbl 0108.37102 · doi:10.1007/BF00281227
[15] Friesecke G., James R.D. and Müller S. (2002). A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55(11): 1461–1506 · Zbl 1021.74024 · doi:10.1002/cpa.10048
[16] Friesecke G., James R.D. and Müller S. (2006). A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180(2): 183–236 · Zbl 1100.74039 · doi:10.1007/s00205-005-0400-7
[17] Fu Y.B. and Ogden R.W. (1999). Nonlinear stability analysis of pre-stressed elastic bodies. Contin. Mech. Thermodyn. 11(3): 141–172 · Zbl 1066.74541 · doi:10.1007/s001610050108
[18] Healey T.J. and Montes-Pizarro E.L. (2003). Global bifurcation in nonlinear elasticity with an application to barrelling states of cylindrical columns. J. Elast. 71(1–3): 33–58 · Zbl 1072.74028 · doi:10.1023/B:ELAS.0000005562.30458.43
[19] Hill R. (1957). On uniqueness and stability in the theory of finite elastic strain. J. Mech. Phys. Solids 5: 229–241 · Zbl 0080.18004 · doi:10.1016/0022-5096(57)90016-9
[20] Hill R. (1975). On the elasticity and stability of perfect crystals at finite strain. Math. Proc. Camb. Philos. Soc. 77: 225–240 · Zbl 0305.73028 · doi:10.1017/S0305004100049549
[21] Holden J.T. (1964). Estimation of critical loads in elastic stability theory. Arch. Ration. Mech. Anal. 17: 171–183 · Zbl 0125.13005 · doi:10.1007/BF00282436
[22] Horgan C.O. (1995). Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37(4): 491–511 · Zbl 0840.73010 · doi:10.1137/1037123
[23] Kirchhoff G. (1850). Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. 40: 51–88 · ERAM 040.1086cj · doi:10.1515/crll.1850.40.51
[24] Koiter, W.T.: On the stability of elastic equilibrium. Ph.D. Thesis, Technische Hogeschool (Technological University of Delft), Delft, Holland (1945)
[25] Lecumberry, M., Müller, S: Stability of slender bodies under compression and validity of the von Kármán theory. Preprint · Zbl 1200.74060
[26] Levinson M. (1968). Stability of a compressed neo-Hookean rectangular parallelepiped. J. Mech. Phys. Solids 16: 403–415 · Zbl 0176.25101 · doi:10.1016/0022-5096(68)90004-5
[27] Love A.E.H. (1927). A treatise on the mathematical theory of elasticity. Dover, New York · JFM 53.0752.01
[28] Marsden J.E. and Hughes T.J.R. (1994). Mathematical foundations of elasticity. Dover, New York · Zbl 0545.73031
[29] Monneau R. (2003). Justification of the nonlinear Kirchhoff–Love theory of plates as the application of a new singular inverse method. Arch. Ration. Mech. Anal. 169(1): 1–34 · Zbl 1030.74030 · doi:10.1007/s00205-003-0267-4
[30] Mora M.G. and Müller S. (2004). A nonlinear model for inextensible rods as a low energy {\(\Gamma\)}-limit of three-dimensional nonlinear elasticity. Ann. Inst. H. Poincaré Anal. NonLinéaire 21(3): 271–293 · Zbl 1109.74028 · doi:10.1016/S0294-1449(03)00044-1
[31] Pantz O. (2001). Une justification partielle du modéle de plaque en flexion par {\(\Gamma\)}-convergence. C.R. Acad. Sci. Paris Ser. I, 332: 587–592 · Zbl 1033.74028
[32] Pantz O. (2003). On the justification of the nonlinear inextensional plate model. Arch. Rational Mech. Anal. 167: 179–209 · Zbl 1030.74031 · doi:10.1007/s00205-002-0238-1
[33] Pearson C.E. (1956). General theory of elastic stability. Q. Appl. Math. 14: 133–144 · Zbl 0071.18604
[34] Podio-Guidugli P. (2003). A new quasilinear model for plate buckling. J. Elast. 71(1-3): 157–182 · Zbl 1156.74327 · doi:10.1023/B:ELAS.0000005554.76200.9e
[35] Ryzhak E.I. (1999). Korn’s constant for a parallelepiped with a free face or pair of faces. Math. Mech. Solids 4(1): 35–55 · Zbl 1001.74560 · doi:10.1177/108128659900400103
[36] Scherzinger W. and Triantafyllidis N. (1998). Asymptotic analysis of stability for prismatic solids under axial loads. J. Mech. Phys. Solids 46(6): 959–1007 · Zbl 0976.74021 · doi:10.1016/S0022-5096(98)00009-X
[37] Signorini, A.: Sulle deformazioni termoelastiche finite. In: Proceedings of the 3rd International Cong. Appl. Mech., vol. 2, pp. 80–89 (1930) · JFM 56.0687.02
[38] Simpson, H.C., Spector, S.J.: On bifurcation in finite elasticity: buckling of a rectangular rod. Preprint · Zbl 1163.74017
[39] Simpson H.C. and Spector S.J. (1987). On the positivity of the second variation in finite elasticity. Arch. Ration. Mech. Anal. 98(1): 1–30 · Zbl 0657.73027 · doi:10.1007/BF00279960
[40] Stoker J.J. (1968). Nonlinear Elasticity. Gordon and Breach Science Publishers, New York · Zbl 0187.45801
[41] Truesdell C. and Noll W. (2004). The non-linear field theories of mechanics. Springer, Berlin · Zbl 1068.74002
[42] Van Hove, L.: Sur l’extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues. Nederl. Akad. Wetensch., Proc., 50, 18–23=Indagationes Math. 9, 3–8 (1947) · Zbl 0029.26802
[43] von Kármán, T.: Festigkeitsprobleme im Maschinenbau. In: Encyclopdie der Mathematischen Wissenschaften, vol. IV/4, pp. 311–385. Leipzig (1910) · JFM 41.0907.02
[44] Zubov L.M. and Rudev A.N. (1993). On the peculiarities of the loss of stability of a non-linearly elastic rectangular beam. Prikl. Mat. Mekh. 57(3): 65–83 · Zbl 0801.73033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.