×

Metric-induced wrinkling of a thin elastic sheet. (English) Zbl 1305.74061

Summary: We study the wrinkling of a thin elastic sheet caused by a prescribed non-Euclidean metric. This is a model problem for the patterns seen, for example, in torn plastic sheets and the leaves of plants. Following the lead of other authors, we adopt a variational viewpoint, according to which the wrinkling is driven by minimization of an elastic energy subject to appropriate constraints and boundary conditions. We begin with a broad introduction, including a discussion of key examples (some well-known, others apparently new) that demonstrate the overall character of the problem. We then focus on how the minimum energy scales with respect to the sheet thickness \(h\) for certain classes of displacements. Our main result is that when deformations are subject to certain hypotheses, the minimum energy is of order \(h^{4/3}\). We also show that when deformations are subject to more restrictive hypotheses, the minimum energy is strictly larger – of order \(h\); it follows that energy minimization in the more restricted class is not a good model for the applications that motivate this work. Our results do not explain the cascade of wrinkles seen in some experimental and numerical studies, and they leave open the possibility that an energy scaling law better than \(h^{4/3}\) could be obtained by considering a larger class of deformations.

MSC:

74K35 Thin films
Full Text: DOI

References:

[1] Audoly, B., Boudaoud, A.: ‘Ruban à godets’: an elastic model for ripples in plant leaves. Comptes Rendus Mecanique 330, 831-836 (2002) · Zbl 1372.74061 · doi:10.1016/S1631-0721(02)01545-0
[2] Audoly, B., Boudaoud, A.: Self-similar structures near boundaries in strained systems. Phys. Rev. Lett. 91, 086105 (2003) · doi:10.1103/PhysRevLett.91.086105
[3] Audoly, B., Pomeau, Y.: Elasticity and Geometry. Oxford University Press, Oxford. From hair curls to the non-linear response of shells. With a foreword by John W. Hutchinson, MR 2677203 (2010) · Zbl 1223.74001
[4] Bella, P., Kohn, R.V.: Wrinkles as the result of compressive stresses in an annular thin film. Comm. Pure Appl. Math. 67, 693-747 (2014) · Zbl 1302.74105
[5] Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates. J. Nonlinear Sci. 10(6), 661-683 (2000) · Zbl 1015.74029 · doi:10.1007/s003320010007
[6] Ben Belgacem, H., Conti, S., DeSimone, A., Müller, S.: Energy scaling of compressed elastic films-three-dimensional elasticity and reduced theories. Arch. Ration. Mech. Anal. 164(1), 1-37 (2002) · Zbl 1041.74048 · doi:10.1007/s002050200206
[7] Brandman, J., Kohn, R.V., Nguyen, H.-M.: Energy scaling laws for conically constrained thin elastic sheets. J. Elasticity 113(2), 251-264 (2013) · Zbl 1329.74096 · doi:10.1007/s10659-012-9420-3
[8] Cerda, E., Mahadevan, L.: Geometry and physics of wrinkling. Phys. Rev. Lett. 90(7), 074302 (2003) · doi:10.1103/PhysRevLett.90.074302
[9] Conti, S., Maggi, F.: Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187(1), 1-48 (2008) · Zbl 1127.74005 · doi:10.1007/s00205-007-0076-2
[10] Davidovitch, B., Schroll, R.D., Cerda, E.: Nonperturbative model for wrinkling in highly bendable sheets. Phys. Rev. E 85, 066115 (2012) · doi:10.1103/PhysRevE.85.066115
[11] Davidovitch, B., Schroll, R.D., Vella, D., Adda-Bedia, M., Cerda, E.: Prototypical model for tensional wrinkling in thin sheets. Proc. Natl. Acad. Sci. 108(45), 18227-18232 (2011) · Zbl 1355.74042 · doi:10.1073/pnas.1108553108
[12] Gemmer, J., Venkataramani, S.: Shape selection in non-euclidean plates. Physica D 240, 1536-1552 (2011) · Zbl 1419.74159 · doi:10.1016/j.physd.2011.07.002
[13] Healey, T.J., Li, Q., Cheng, R.-B.: Wrinkling behavior of highly stretched rectangular elastic films via parametric global bifurcation. J. Nonlinear Sci. 23(5), 777-805 (2013) · Zbl 1292.35034 · doi:10.1007/s00332-013-9168-3
[14] Jin, W., Sternberg, P.: Energy estimates for the von Kármán model of thin-film blistering. J. Math. Phys. 42(1), 192-199 (2001) · Zbl 1028.74036 · doi:10.1063/1.1316058
[15] Jin W., Sternberg, P.: In-plane displacements in thin-film blistering. Proc. Roy. Soc. Edinburgh Sect. A 132(4): 911-930 (2002). MR 1926922 (2003f:74020). · Zbl 1036.74038
[16] Kim, T.-Y., Puntel, E., Fried, E.: Numerical study of the wrinkling of a stretched thin sheet. Int. J. Solids Str. 49(5), 771-782 (2012) · doi:10.1016/j.ijsolstr.2011.11.018
[17] Klein, Y., Venkataramani, S., Sharon, E.: Experimental study of shape transitions and energy scaling in thin non-euclidean plates. Phys. Rev. Lett. 106, 118303 (2011) · doi:10.1103/PhysRevLett.106.118303
[18] Koehl, M.A.R., Silk, W.K., Liang, H., Mahadevan, L.: How kelp produce blade shapes suited to different flow regimes: a new wrinkle. Integr. Comp. Biol. 48(6), 834-851 (2008) · doi:10.1093/icb/icn069
[19] Kuiper, N.H.: Isometric and short imbeddings. Nederl. Akad. Wetensch. Proc. Ser. A. Indag. Math. 21(62), 11-25 (1959) · Zbl 0092.14703
[20] Lewicka, M., Mahadevan, L., Pakzad, M.R.: The Föppl-von Kármán equations for plates with incompatible strains. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467(2126), 402-426 (2011). MR 2748099 (2012a:74064) · Zbl 1219.74027
[21] Marder, M.: The shape of the edge of a leaf. Found. Phys. 33(12), 1743-1768 (2003) · doi:10.1023/A:1026229605010
[22] Marder, M., Papanicolaou, N.: Geometry and elasticity of strips and flowers. J. Stat. Phys. 125(5-6), 1069-1096 (2006) · Zbl 1107.82012
[23] Marder, M., Sharon, E., Smith, S., Roman, B.: Theory of edges of leaves. Europhys. Lett. 62(4), 498-504 (2003) · doi:10.1209/epl/i2003-00334-5
[24] Nash, J.: \[{C}^1\] C1 isometric imbeddings. Annal. Math. 60(3), 383-396 (1954) · Zbl 0058.37703 · doi:10.2307/1969840
[25] Puntel, E., Deseri, L., Fried, E.: Wrinkling of a stretched thin sheet. J. Elasticity 105(1-2), 137-170 (2011) · Zbl 1320.74047 · doi:10.1007/s10659-010-9290-5
[26] Sharon, E., Marder, M., Swinney, H.L.: Leaves, flowers and garbage bags: making waves. Am. Sci. 92(3), 254-261 (2004) · doi:10.1511/2004.47.932
[27] Sharon, E., Roman, B., Marder, M., Shin, G.-S., Swinney, H.L.: Mechanics: buckling cascades in free sheets. Nature 419, 579 (2002) · doi:10.1038/419579a
[28] Sharon, E., Roman, B., Swinney, H.L.: Geometrically driven wrinkling observed in free plastic sheets and leaves. Phys. Rev. E 75(4), 046211 (2007) · doi:10.1103/PhysRevE.75.046211
[29] Venkataramani, S.C.: Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity 17(1), 301-312 (2004) · Zbl 1058.74038 · doi:10.1088/0951-7715/17/1/017
[30] Witten, T.A.: Stress focusing in elastic sheets. Rev. Mod. Phys. 79(2), 643-675 (2007) · Zbl 1205.74116 · doi:10.1103/RevModPhys.79.643
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.