×

Fluctuating periodic solutions and moment boundedness of a stochastic model for the bone remodeling process. (English) Zbl 1393.92008

Summary: In this work, we model osteoclast-osteoblast population dynamics with random environmental fluctuations in order to understand the random variations of the bone remodeling process in real life. For this purpose, we construct a stochastic differential model for the interactions between the osteoclast and osteoblast cell populations using the parameter perturbation technique. We prove the existence of a globally attractive positive unique solution for the stochastically perturbed system. Also, the stochastic boundedness of the solution is demonstrated using its \(p\)-th order moments for \(p \geq 1\). Finally, we show that the introduction of noise in the deterministic model provides a fluctuating periodic solution. Numerical evidence supports our theoretical results and a discussion of the results is carried out.

MSC:

92C37 Cell biology
92C30 Physiology (general)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
Full Text: DOI

References:

[1] Allen, L. J.S.; Burgen, A. M., Comparison of deterministic and stochastic SIS and SIR models in discrete time, Math. Biosci., 163, 1-33, (2000) · Zbl 0978.92024
[2] Allen, E., Modeling with ito stochastic differential equations, (2007), Springer Dordrecht The Netherlands · Zbl 1130.60064
[3] Arató, M., A famous nonlinear stochastic equation (Lotka-Volterra model with diffusion), Math. Comput. Modell., 38, 709-726, (2003) · Zbl 1049.92030
[4] Ayati, B. P.; Edwards, C. M.; Webb, G. F.; Wikswo, J. P., A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease, Biol. Direct, 5, 28, (2010)
[5] Braumann, C. A., Itô versus Stratonovich calculus in random population growth, Math. Biosci., 206, 81-107, (2007) · Zbl 1124.92039
[6] Carlsten, H., Immune responses and bone loss: the estrogen connection, Rev. Immunol., 208, 194-206, (2005)
[7] Casabán, M. C.; Cortés, J. C.; Romero, J. V.; Roselló, M. D., Probabilistic solution of random SI-type epidemiological models using the random variable transformation technique, Commun. Nonlinear Sci. Numer. Simul., 24, 86-97, (2015) · Zbl 1440.92061
[8] Costantino, R.; Desharnais, R., Population dynamics and the tribolium model: genetics and demography, 13, (2012), Springer Science & Business Media
[9] Crockett, J. C.; Rogers, M. J.; Coxon, F. P.; Hocking, L. J.; Helfrich, M. H., Bone remodelling at a glance, J. Cell. Sci., 124, 991-998, (2011)
[10] Díaz-Infante, S.; Jerez, S., The linear Steklov method for SDEs with non-globally Lipschitz coefficients: strong convergence and simulation, J. Comput. Appl. Math., 309, 408-423, (2017) · Zbl 1468.65007
[11] Ding, Y.; Xu, M.; Hu, L., Asymptotic behavior and stability of a stochastic model for AIDS transmission, Appl. Math. Comput., 204, 99-108, (2008) · Zbl 1152.92020
[12] Dorini, F. A.; Bobko, N.; Dorini, L. B., A note on the logistic equation subject to uncertainties in parameters, Comput. Appl. Math., 1-11, (2016)
[13] Eriksen, E. F., Cellular mechanisms of bone remodeling, Rev. Endocr. Metab. Disord., 11, 219-227, (2010)
[14] Gardiner, C. W., Handbook of stochastic methods, (2004), Springer Berlin · Zbl 1072.81002
[15] Gillespie, D. T., A rigorous derivations of the chemical master equation, Physica A, 188, 404-425, (1992)
[16] Gray, A.; Greenhalgh, D.; Hu, L.; Mao, X.; Pan, J., A stochastic differential equation SIS epidemic model, SIAM J. Appl. Math., 71, 876-902, (2011) · Zbl 1263.34068
[17] R. Ghomrasni, L. Bonney, SDE in random population growth, 2008. Arxiv:0808.0750; R. Ghomrasni, L. Bonney, SDE in random population growth, 2008. Arxiv:0808.0750
[18] He, X.; Gopalsamy, K., Persistence, attractivity, and delay in facultative mutualism, J. Math. Anal. Appl., 215, 154-173, (1997) · Zbl 0893.34036
[19] Huang, L., Stochastic stabilization and destabilization of nonlinear differential equations, Syst. Control Lett., 62, 163-169, (2013) · Zbl 1260.93169
[20] Hutzenthaler, M.; Jentzen, A.; Kloeden, P. E., Strong convergence of an explicit numerical method for sdes with nonglobally Lipschitz continuous coefficients, Ann. Appl. Probab., 22, 1611-1641, (2012) · Zbl 1256.65003
[21] Jerez, S.; Chen, B., Stability analysis of a komarova type model for the interactions of osteoblast and osteoclast cells during bone remodeling, Math. Biosci., 264, 29-37, (2015) · Zbl 1371.92044
[22] Karatzas, I.; Shreve, S. E., Brownian motion and stochastic calculus, (1998), Springer New York
[23] Komarova, S. V.; Smith, R. J.; Dixon, S. J.; Sims, S. M.; Wahl, L. M., Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling, Bone, 33, 206-215, (2003)
[24] Lemaire, V.; Tobin, F. L.; Greller, L. D.; Cho, C. R.; Suva, L. J., Modeling the interactions between osteoblast and osteoclast activities in bone remodeling, J. Theoret. Biol., 229, 293-309, (2004) · Zbl 1440.92028
[25] X. Mao, Stochastic differential equations and applications, Horwood, 1997.; X. Mao, Stochastic differential equations and applications, Horwood, 1997. · Zbl 0892.60057
[26] Milstein, G. N.; Tretyakov, M. V., Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients, SIAM J. Numer. Anal., 43, 1139-1154, (2005) · Zbl 1102.60059
[27] Nirav, D.; Greenhalgh, D.; Mao, X., A stochastic model for internal HIV dynamics, J. Math. Anal. Appl., 341, 1084-1101, (2008) · Zbl 1132.92015
[28] ØOksendal, B., Stochastic differential equations: an introduction with applications, (2010), Springer Berlin
[29] Parfitt, A. M., Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone, J. Cell. Biochem, 55, 273-286, (1994)
[30] Peterson, M. C.; Riggs, M. M., A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling, Bone, 46, 49-63, (2010)
[31] Pivonka, P.; Komarova, S. V., Mathematical modeling in bone biology: from intracellular signaling to tissue mechanics, Bone, 47, 181-189, (2010)
[32] Raggatt, L. J.; Partridge, N. C., Cellular and molecular mechanisms of bone remodeling, J. Biol. Chem., 285, 25103-25108, (2010)
[33] Savageau, M. A., Biochemical systems analysis: A study of function and design in molecular biology, (1976), Addison-Wesley · Zbl 0398.92013
[34] Yang, Q.; Jiang, D.; Shi, N.; N.; Ji, C., The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388, 1, 248-271, (2012) · Zbl 1231.92058
[35] Ton, T. V.; Yagi, A., Dynamics of a stochastic predator-prey model with the beddington-deangelis functional response, Commun. Stoch. Anal., 2, 371-386, (2011) · Zbl 1331.60131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.