×

The linear Steklov method for SDEs with non-globally Lipschitz coefficients: strong convergence and simulation. (English) Zbl 1468.65007

Summary: We present an explicit numerical method for solving stochastic differential equations with non-globally Lipschitz coefficients. A linear version of the Steklov average under a split-step formulation supports our new solver. The linear Steklov method converges strongly with a standard one-half order. Also, we present numerical evidence that the explicit linear Steklov reproduces almost surely stability solutions with high-accuracy for diverse application models even for stochastic differential systems with super-linear diffusion coefficients.

MSC:

65C30 Numerical solutions to stochastic differential and integral equations
34F05 Ordinary differential equations and systems with randomness
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] Glasserman, P., Monte Carlo methods in financial engineering, (Applications of Mathematics: Stochastic Modelling and Applied Probability (2004), Springer) · Zbl 1038.91045
[2] Giles, M. B., Multilevel monte carlo path simulation, Oper. Res., 56, 607-617 (2008) · Zbl 1167.65316
[3] Cruz, C.; Chinesta, F.; Régnier, G., Review on the Brownian dynamics simulation of bead-rod-spring models encountered in computational rheology, Arch. Comput. Methods Eng., 19, 227-259 (2012) · Zbl 1354.74014
[4] Hutzenthaler, M.; Jentzen, A.; Kloeden, P. E., Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467, 1563-1576 (2011) · Zbl 1228.65014
[5] Hutzenthaler, M.; Jentzen, A.; Kloeden, P. E., Divergence of the multilevel monte carlo Euler method for nonlinear stochastic differential equations, Ann. Appl. Probab., 23, 1913-1966 (2013) · Zbl 1283.60098
[6] Hutzenthaler, M.; Jentzen, A.; Kloeden, P. E., Strong convergence of an explicit numerical method for sdes with nonglobally lipschitz continuous coefficients, Ann. Appl. Probab., 22, 1611-1641 (2012) · Zbl 1256.65003
[7] Wang, X.; Gan, S., The tamed milstein method for commutative stochastic differential equations with non-globally lipschitz continuous coefficients, J. Difference Equ. Appl., 19, 466-490 (2013) · Zbl 1262.65008
[8] Zong, X.; Wu, F.; Huang, C., Convergence and stability of the semi-tamed Euler scheme for stochastic differential equations with non-lipschitz continuous coefficients, Appl. Math. Comput., 228, 240-250 (2014) · Zbl 1364.65020
[9] Hutzenthaler, M.; Jentzen, A., Numerical approximations of stochastic differential equations with non-globally lipschitz continuous coefficients, Mem. Amer. Math. Soc., 236 (2015) · Zbl 1330.60084
[11] Tretyakov, M. V.; Zhang, Z., A fundamental mean-square convergence theorem for sdes with locally lipschitz coefficients and its applications, SIAM J. Numer. Anal., 51, 3135-3162 (2013) · Zbl 1293.60069
[12] Liu, W.; Mao, X., Strong convergence of the stopped Euler-maruyama method for nonlinear stochastic differential equations, Appl. Math. Comput., 223, 389-400 (2013) · Zbl 1329.65018
[13] Mao, X., The truncated Euler-maruyama method for stochastic differential equations, J. Comput. Appl. Math., 290, 370-384 (2015) · Zbl 1330.65016
[14] Higham, D. J.; Mao, X.; Stuart, A. M., Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal., 40, 1041-1063 (2002) · Zbl 1026.65003
[15] Díaz-Infante, S.; Jerez, S., Convergence and asymptotic stability of the explicit Steklov method for stochastic differential equations, J. Comput. Appl. Math., 291, 36-47 (2016) · Zbl 1330.65014
[16] Mao, X.; Szpruch, L., Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally lipschitz continuous coefficients, J. Comput. Appl. Math., 238, 14-28 (2013) · Zbl 1262.65012
[17] Mao, X., Stochastic Differential Equations and Application (2007), Horwood Pub · Zbl 1138.60005
[19] Fine, A. I.; Kass, S., Indeterminate forms for multi-place functions, Ann. Polon. Math., 18, 59-64 (1965) · Zbl 0137.03603
[20] Mao, X.; Marion, Gl.; Renshaw, E., Environmental brownian noise suppresses explosions in population dynamics, Stochastic Process. Appl., 97, 95-110 (2002) · Zbl 1058.60046
[21] Mao, X.; Sabanis, S.; Renshaw, E., Asymptotic behaviour of the stochastic lotka-volterra model, J. Math. Anal. Appl., 287, 141-156 (2003) · Zbl 1048.92027
[22] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations (1992), Springer-Verlag · Zbl 0925.65261
[23] Tornatore, E.; Buccellato, S. M.; Vetro, P., Stability of a stochastic SIR system, Physica A, 354, 111-126 (2005)
[24] Schenk-Hoppé, K. R., Stochastic hopf bifurcation: An example, Int. J. Nonlin. Mech., 31, 685-692 (1996) · Zbl 0900.70357
[25] Gao, J. B.; Tung, W.; Rao, N., Noise-induced hopf-bifurcation-type sequence and transition to chaos in the lorenz equations, Phys. Rev. Lett., 89, Article 254101 pp. (2002)
[26] Dalal, N.; Greenhalgh, D.; Mao, X., A stochastic model for internal HIV dynamics, J. Math. Anal. Appl., 341, 1084-1101 (2008) · Zbl 1132.92015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.