×

Itô versus Stratonovich calculus in random population growth. (English) Zbl 1124.92039

Summary: The context is the general stochastic differential equation (SDE) model \(dN/dt=N(g(N)) + \sigma\varepsilon(t))\) for population growth in a randomly fluctuating environment. Here, \(N = N(t)\) is the population size at time \(t\), \(g(N)\) is the “average” per capita growth rate (we work with a general almost arbitrary function \(g\)), and \(\sigma\varepsilon(t)\) is the effect of environmental fluctuations \((\sigma > 0\), \(\varepsilon(t)\) standard white noise). There are two main stochastic calculi used to interpret the SDE, the Itô calculus and the Stratonovich calculus. They yield different solutions and even qualitatively different predictions (on extinction, for example). So, there is a controversy on which calculus one should use.
We resolve the controversy and show that the real issue is merely semantic. It is due to the informal interpretation of \(g(x)\) as being an (unspecified) “average” per capita growth rate (when population size is \(x\)). The implicit assumption usually made in the literature is that the “average” growth rate is the same for both calculi, when indeed this rate should be defined in terms of the observed process. We prove that, when using the Itô calculus, \(g(N)\) is indeed the arithmetic average growth rate \(R_a(x)\) and, when using the Stratonovich calculus, \(g(N)\) is indeed the geometric average growth rate \(R_g(x)\). Writing the solutions of the SDE in terms of a well-defined average, \(R_a(x)\) or \(R_g(x)\), instead of an undefined “average” \(g(x)\), we prove that the two calculi yield exactly the same solution. The apparent difference was due to the semantic confusion of taking the informal term “average growth rate” as meaning the same average.

MSC:

92D25 Population dynamics (general)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H30 Applications of stochastic analysis (to PDEs, etc.)

References:

[1] Levins, R., The effect of random variations of different types on population growth, Proc. Natl. Acad. Sci. USA, 62, 1062 (1969)
[2] May, R. M., Stability in randomly fluctuating versus deterministic environments, Am. Nat., 107, 621 (1973)
[3] Capocelli, R. M.; Ricciardi, L. M., A diffusion model for population growth in a random environment, Theor. Popul. Biol., 5, 28 (1974) · Zbl 0291.92031
[4] Tuckwell, H. C., A study of some diffusion models of population growth, Theor. Popul. Biol., 3, 345 (1974) · Zbl 0291.92030
[5] Feldman, M. W.; Roughgarden, J., A population’s stationary distribution and chance of extinction in a stochastic environment with remarks on the theory of species packing, Theor. Popul. Biol., 7, 197 (1975) · Zbl 0299.92011
[6] Braumann, C. A., Population extinction probabilities and methods of estimation for population stochastic differential equation models, (Bucy, R. S.; Moura, J. M.F., Nonlinear Stochastic Problems (1993), D. Reidel: D. Reidel Dordrecht), 553
[7] Dennis, B.; Patil, G. P., The gamma distribution and weighted multimodal gamma distributions as models of population abundance, Math. Biosci., 68, 187 (1984) · Zbl 0536.92025
[8] Braumann, C. A., Applications of stochastic differential equations to population growth, (Bainov, D., Proceedings of the Ninth International Colloquium on Differential Equations (1999), VSP: VSP Utrecht), 47 · Zbl 0943.60043
[9] Braumann, C. A., Crescimento de populações em ambiente aleatório: generalização a intensidades de ruído dependentes da densidade da população, (Neves, M. M.; Cadima, J.; Martins, M. J.; Rosado, F., A Estatística em Movimento (2001), Edições SPE: Edições SPE Lisboa), 119
[10] Braumann, C. A., Threshold crossing probabilities for population growth models in random environments, J. Biol. Syst., 3, 505 (1995)
[11] Beddington, J. R.; May, R. M., Harvesting natural populations in a randomly fluctuating environment, Science, 197, 463 (1977)
[12] Gleit, A., Optimal harvesting in a continuous time with stochastic growth, Math. Biosci., 41, 112 (1978) · Zbl 0405.92013
[13] May, R. M.; Beddington, J. R.; Horwood, J. H.; Shepherd, J. G., Exploiting natural populations in an uncertain world, Math. Biosci., 42, 219 (1978)
[14] Braumann, C. A., Stochastic differential equation models of fisheries in an uncertain world: extinction probabilities, optimal fishing effort, and parameter estimation, (Capasso, V.; Grosso, E.; Paveri-Fontana, L. S., Mathematics in Biology and Medicine (1985), Springer: Springer Berlin), 201 · Zbl 0565.92019
[15] Braumann, C. A., General models of fishing with random growth parameters, (Demongeot, J.; Capasso, V., Mathematics Applied to Biology and Medicine (1993), Wuerz: Wuerz Winnipeg), 155
[16] Braumann, C. A., Constant effort and constant quota fishing policies with cut-offs in a random environment, Nat. Res. Model., 14, 199 (2001) · Zbl 0986.91035
[17] Braumann, C. A., Variable effort fishing models in random environments, Math. Biosci., 156, 1 (1999) · Zbl 0953.92029
[18] Braumann, C. A., Variable effort harvesting models in random environments: generalization to density-dependent noise intensities, Math. Biosci., 177&178, 229 (2002) · Zbl 1003.92027
[19] Alvarez, L. H.R.; Shepp, L. A., Optimal harvesting in stochastically fluctuating populations, J. Math. Biol., 37, 155 (1997) · Zbl 0940.92029
[20] Lungu, E.; Øksendal, B., Optimal harvesting from a population in a stochastic crowded environment, Math. Biosci., 145, 47 (1997) · Zbl 0885.60052
[21] Alvarez, L. H.R., On the option interpretation of rational harvesting planning, J. Math. Biol., 40, 383 (2000) · Zbl 0960.91058
[22] Braumann, C. A., Estimação de parâmetros em modelos de crescimento e pesca em ambientes aleatórios, (Branco, J.; Gomes, P.; Prata, J., Bom Senso e Sensibilidade, Traves Mestras da Estatística (1996), SPE and Edições Salamandra: SPE and Edições Salamandra Lisboa), 103
[23] Braumann, C. A., Parameter estimation in population growth and fishing models in random environments, Bull. Intl. Stat. Inst., LVII-CP1, 21 (1997)
[24] Braumann, C. A., Population growth in random environments, Bull. Math. Biol., 45, 635 (1983) · Zbl 0511.92017
[25] Arnold, L., Stochastic Differential Equations: Theory and Applications (1974), Wiley: Wiley New York · Zbl 0278.60039
[26] Øksendal, B., Stochastic Differential Equations: An Introduction with Applications (2003), Springer: Springer Berlin · Zbl 1025.60026
[27] Ghiman, I. I.; Skorohod, A. V., Stochastic Differential Equations (1972), Springer: Springer Berlin · Zbl 0242.60003
[28] Karatzas, I.; Shreve, S. E., Brownian Motion and Stochastic Calculus (1991), Springer: Springer New York · Zbl 0734.60060
[29] Karlin, S.; Taylor, H. M., A Second Course in Stochastic Processes (1981), Academic: Academic New York · Zbl 0469.60001
[30] May, R. M.; MacArthur, R. H., Niche overlap as a function of environmental variability, Proc. Natl. Acad. Sci. USA, 69, 1109 (1972)
[31] May, R. M., Stability and Complexity in Model Ecosystems (1974), Princeton University Press: Princeton University Press New Jersey
[32] Turelli, M., A reexamination of stability in randomly varying environments with comments on the stochastic theory of limiting similarity, Theor. Popul. Biol., 13, 244 (1978) · Zbl 0407.92019
[33] A.G. Nobile, L.M. Ricciardi, Growth and extinction in random environments, in: Proc. INFO II, Patras, 1979.; A.G. Nobile, L.M. Ricciardi, Growth and extinction in random environments, in: Proc. INFO II, Patras, 1979.
[34] Ricciardi, L. M., On a conjecture concerning population growth in random environment, Biol. Cybern., 32, 95 (1979) · Zbl 0393.92014
[35] Guess, H. A.; Gillespie, J. H., Diffusion approximations to linear stochastic difference equations with stationary coefficients, J. Appl. Probab., 14, 58 (1977) · Zbl 0364.60097
[36] Turelli, M., Random environments and stochastic calculus, Theor. Popul. Biol., 12, 140 (1977) · Zbl 0444.92013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.