×

Symmetries, dynamics, and control for the 2D Kolmogorov flow. (English) Zbl 1390.93403

Summary: The symmetries, dynamics, and control problem of the two-dimensional (2D) Kolmogorov flow are addressed. The 2D Kolmogorov flow is known as the 2D Navier-Stokes (N-S) equations with periodic boundary conditions and with a sinusoidal external force along the \(x\)-direction. First, using the Fourier Galerkin method on the original 2D Navier-Stokes equations, we obtain a seventh-order system of nonlinear ordinary differential equations (ODEs) which approximates the behavior of the Kolmogorov flow. The dynamics and symmetries of the reduced seventh-order ODE system are analyzed through computer simulations for the Reynolds number range \(0 < R_e < 26.41\). Extensive numerical simulations show that the obtained system is able to display the different behaviors of the Kolmogorov flow. Then, we design Lyapunov based controllers to control the dynamics of the system of ODEs to different attractors (e.g., a fixed-point, a periodic orbit, or a chaotic attractor). Finally, numerical simulations are undertaken to validate the theoretical developments.

MSC:

93C20 Control/observation systems governed by partial differential equations
35Q30 Navier-Stokes equations
93B17 Transformations
93C15 Control/observation systems governed by ordinary differential equations
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory

Software:

DSTool

References:

[1] Titi, E. S., On approximate inertial manifolds to the Navier-Stokes equations, Journal of Mathematical Analysis and Applications, 149, 2, 540-557, (1990) · Zbl 0723.35063 · doi:10.1016/0022-247X(90)90061-J
[2] Christofides, P. D.; Daoutidis, P., Finite-dimensional control of parabolic {PDE} systems using approximate inertial manifolds, Journal of Mathematical Analysis and Applications, 216, 2, 398-420, (1997) · Zbl 0890.93051 · doi:10.1006/jmaa.1997.5649
[3] Debussche, A.; Marion, M., On the construction of families of approximate inertial manifolds, Journal of Differential Equations, 100, 1, 173-201, (1992) · Zbl 0760.34050 · doi:10.1016/0022-0396(92)90131-6
[4] Fabes, E.; Luskin, M.; Sell, G. R., Construction of inertial manifolds by elliptic regularization, Journal of Differential Equations, 89, 2, 355-387, (1991) · Zbl 0728.34047 · doi:10.1016/0022-0396(91)90125-S
[5] Foias, C.; Temam, R., The algebraic approximation of attractors: the finite-dimensional case, Physica D: Nonlinear Phenomena, 32, 2, 163-182, (1988) · Zbl 0671.58024 · doi:10.1016/0167-2789(88)90049-8
[6] Temam, R., Induced trajectories and approximate inertial manifolds, Mathematical Modelling and Numerical Analysis, 23, 3, 541-561, (1989) · Zbl 0688.58036 · doi:10.1051/m2an/1989230305411
[7] Zhang, J.; Ren, S.; Mei, G., Model reduction on inertial manifolds for N-S equations approached by multilevel finite element method, Communications in Nonlinear Science and Numerical Simulation, 16, 1, 195-205, (2011) · Zbl 1221.76122 · doi:10.1016/j.cnsns.2010.02.023
[8] Foias, C.; Sell, G. R.; Temam, R., Inertial manifolds for nonlinear evolutionary equations, Journal of Differential Equations, 73, 2, 309-353, (1988) · Zbl 0643.58004 · doi:10.1016/0022-0396(88)90110-6
[9] Kwak, M., Finite-dimensional inertial forms for the 2D Navier-Stokes equations, Indiana University Mathematics Journal, 41, 4, 927-981, (1992) · Zbl 0765.35034 · doi:10.1512/iumj.1992.41.41051
[10] Foias, C.; Jolly, M. S.; Kevrekidis, I. G.; Sell, G. .; Titi, E. S., On the computation of inertial manifolds, Physics Letters A, 131, 7-8, 433-436, (1988) · doi:10.1016/0375-9601(88)90295-2
[11] Jolly, M., Bifurcation computations on an approximate inertial manifold for the 2D Navier-Stokes equations, Physica D: Nonlinear Phenomena, 63, 1-2, 8-20, (1993) · Zbl 0767.35059 · doi:10.1016/0167-2789(93)90143-O
[12] Boldrighini, C.; Franceschini, V., A five-dimensional truncation of the plane incompressible Navier-Stokes equations, Communications in Mathematical Physics, 64, 2, 159-170, (1978/79) · Zbl 0394.76031 · doi:10.1007/BF01197511
[13] Baive, D.; Franceschini, V., Symmetry breaking on a model of five-mode truncated Navier-Stokes equations, Journal of Statistical Physics, 26, 3, 471-484, (1981) · doi:10.1007/BF01011429
[14] Franceschini, V.; Inglese, G.; Tebaldi, C., A five-mode truncation of the Navier-Stokes equations on a three-dimensional torus, Computational Mechanics, 3, 1, 19-37, (1988) · Zbl 0631.76023 · doi:10.1007/BF00280749
[15] Franceschini, V.; Giberti, C.; Nicolini, M., Common periodic behavior in larger and larger truncations of the Navier-Stokes equations, Journal of Statistical Physics, 50, 5-6, 879-896, (1988) · Zbl 1084.76019 · doi:10.1007/BF01019145
[16] Franceschini, V.; Tebaldi, C., Sequences of infinite bifurcations and turbulence in a five-mode truncation of the Navier-Stokes equations, Journal of Statistical Physics, 21, 6, 707-726, (1979) · doi:10.1007/BF01107910
[17] Franceschini, V.; Tebaldi, C., A seven-mode truncation of the plane incompressible Navier-Stokes equations, Journal of Statistical Physics, 25, 3, 397-417, (1981) · doi:10.1007/BF01010796
[18] Chen, Z.-M., Bifurcations of a steady-state solution to the two-dimensional Navier-Stokes equations, Communications in Mathematical Physics, 201, 1, 117-138, (1999) · Zbl 0943.35061 · doi:10.1007/s002200050551
[19] Chen, Z.; Price, W., Transition to chaos in fluid motion system, Chaos, Solitons & Fractals, 26, 4, 1195-1202, (2005) · Zbl 1074.76011
[20] Chen, Z.-M.; Price, W. G., Chaotic behavior of a Galerkin model of a two-dimensional flow, Chaos: An Interdisciplinary Journal of Nonlinear Science, 14, 4, 1056-1068, (2004) · Zbl 1080.37093 · doi:10.1063/1.1804091
[21] Liu, V. X., Instability for the Navier-Stokes equations on the 2-dimensional torus and a lower bound for the Hausdorff dimension of their global attractors, Communications in Mathematical Physics, 147, 2, 217-230, (1992) · Zbl 0778.76021 · doi:10.1007/BF02096584
[22] Thess, A., Instabilities in two-dimensional spatially periodic flows. I. Kolmogorov flow, Physics of Fluids A. Fluid Dynamics, 4, 7, 1385-1395, (1992) · Zbl 0753.76061 · doi:10.1063/1.858415
[23] Nicolaenko, B.; She, Z.-S., Symmetry-breaking homoclinic chaos and vorticity bursts in periodic Navier-Stokes flows, European Journal of Mechanics - B/Fluids, 10, 2, suppl., 67-74, (1991) · Zbl 0727.76067
[24] Sirovich, L., Turbulence and the dynamics of coherent structures, Quarterly of Applied Mathematics, 45, 3, 561-590, (1987) · Zbl 0676.76047 · doi:10.1090/qam/910462
[25] Armbruster, D.; Nicolaenko, B.; Smaoui, N.; Chossat, P., Symmetries and dynamics for 2-D Navier-Stokes flow, Physica D: Nonlinear Phenomena, 95, 1, 81-93, (1996) · Zbl 0899.76113 · doi:10.1016/0167-2789(96)00006-1
[26] Armbruster, D.; Heiland, R.; Kostelich, E. J.; Nicolaenko, B., Phase-space analysis of bursting behavior in Kolmogorov flow, Physica D: Nonlinear Phenomena, 58, 1-4, 392-401, (1992) · Zbl 1194.76085 · doi:10.1016/0167-2789(92)90125-7
[27] Smaoui, N.; Armbruster, D., Symmetry and the Karhunen-Loeve analysis, SIAM Journal on Scientific Computing, 18, 5, 1526-1532, (1997) · Zbl 0888.35008 · doi:10.1137/S1064827596309694
[28] Smaoui, N., A model for the unstable manifold of the bursting behavior in the 2D Navier-Stokes flow, SIAM Journal on Scientific Computing, 23, 3, 824-839, (2001) · Zbl 1125.76332 · doi:10.1137/S1064827599355013
[29] Smaoui, N., Linear versus nonlinear dimensionality reduction of high-dimensional dynamical systems, SIAM Journal on Scientific Computing, 25, 6, 2107-2125, (2004) · Zbl 1058.35098 · doi:10.1137/S1064827502412723
[30] Abergel, F.; Temam, R., On some control problems in fluid mechanics, Theoretical and Computational Fluid Dynamics, 1, 6, 303-325, (1990) · Zbl 0708.76106 · doi:10.1007/BF00271794
[31] Baker, J.; Christofides, P. D., Finite-dimensional approximation and control of non-linear parabolic {PDE} systems, International Journal of Control, 73, 5, 439-456, (2000) · Zbl 1001.93034 · doi:10.1080/002071700219614
[32] Baker, J.; Armaou, A.; Christofides, P. ., Nonlinear control of incompressible fluid flow: application to Burgers’ equation and 2D channel flow, Journal of Mathematical Analysis and Applications, 252, 1, 230-255, (2000) · Zbl 1011.76018 · doi:10.1006/jmaa.2000.6994
[33] Armaou, A.; Christofides, P. D., Wave suppression by nonlinear finite-dimensional control, Chemical Engineering Science, 55, 14, 2627-2640, (2000) · doi:10.1016/S0009-2509(99)00544-8
[34] Guan, S.; Zhou, Y. C.; Wei, G. W.; Lai, C.-H., Controlling flow turbulence, Chaos: An Interdisciplinary Journal of Nonlinear Science, 13, 1, 64-70, (2003) · doi:10.1063/1.1539017
[35] Gambino, G.; Lombardo, M. C.; Sammartino, M., Adaptive control of a seven mode truncation of the Kolmogorov flow with drag, Chaos, Solitons & Fractals, 41, 1, 47-59, (2009) · Zbl 1198.76027 · doi:10.1016/j.chaos.2007.11.003
[36] Smaoui, N.; Zribi, M., Dynamics and control of the 2-d Navier-Stokes equations, Applied Mathematics and Computation, 237, 461-473, (2014) · Zbl 1334.35211 · doi:10.1016/j.amc.2014.03.150
[37] Smaoui, N.; Zribi, M., Dynamics and control of the seven-mode truncation system of the 2-d Navier-Stokes equations, Communications in Nonlinear Science and Numerical Simulation, 32, 169-189, (2016) · Zbl 1510.76064 · doi:10.1016/j.cnsns.2015.08.012
[38] Smaoui, N.; Zribi, M., On the control of the chaotic attractors of the 2-d Navier-Stokes equations, Chaos: An Interdisciplinary Journal of Nonlinear Science, 27, 3, (2017) · Zbl 1390.37063 · doi:10.1063/1.4978682
[39] Arnold, V.; Mechalkin, L. D., The Kolmogorov seminar on analysis, Russian Mathematical Surveys, 15, 247-250, (1958)
[40] Guckenheimer, J.; Myers, M. R.; Wicklin, F. J.; Worfolk, P. A., dstool: A dynamical system toolkit with an interactive graphical interface, (1995), User’s Manual, Center for Applied Mathematics, Cornell University
[41] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, (1965), New York, NY, USA: Gordon and Breach, New York, NY, USA · Zbl 0184.52603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.