×

Construction of inertial manifolds by elliptic regularization. (English) Zbl 0728.34047

An inertial manifold for an evolution equation \(u'+Au=F(u)\) on a Hilbert space H is a globally exponentially attracting, positively invariant, finite dimensional Lipschitz manifold \({\mathcal M}\) in H. Sometimes \({\mathcal M}\) can be represented as the graph of a function \(\phi\) : PH\(\to QH\), where P is the orthogonal projection to the space corresponding to the first M eigenvalues \(\lambda_ 1,...,\lambda_ M\) of A and \(Q=I-P\). In that case, \(\Phi\) satisfies \(D\Phi (PF(p+\Phi)-Ap)=QF(p+\Phi)-A\Phi\) on PH. In this paper, the authors solve this first order PDE by considering the elliptic equation \(-\epsilon \Delta \Phi_{\epsilon}+D\Phi_{\epsilon}(PF(p+\Phi_{\epsilon})- Ap)+A\Phi_{\epsilon}=QF(p+\Phi_{\epsilon})\) for \(\epsilon >0\). It is shown that under certain conditions on A and F, \(\Phi_{\epsilon}\) converges to \(\Phi\), provided the ‘spectral gap’ conditions: \(\lambda_{M+1}-\lambda_ M>K_ 1\) and \(\lambda_{M+1}>K_ 2\) are satisfied.
Reviewer: J.So (Edmonton)

MSC:

34C30 Manifolds of solutions of ODE (MSC2000)
34G20 Nonlinear differential equations in abstract spaces
35B40 Asymptotic behavior of solutions to PDEs
35G10 Initial value problems for linear higher-order PDEs
35K25 Higher-order parabolic equations
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0186.19101
[2] Adams, R. A., Lectures on Elliptic Boundary Value Problems (1965), Van Nostrand: Van Nostrand Princeton, NJ · Zbl 0142.37401
[3] Billotti, J. E.; LaSalle, J. P., Dissipative periodic processes, Bull. Amer. Math. Soc., 77, 1082-1088 (1971) · Zbl 0274.34061
[4] Chow, S-N; Hale, J. K., Methods of Bifurcation Theory (1982), Springer-Verlag: Springer-Verlag New York · Zbl 0487.47039
[5] Chow, S-N; Lu, K.; Sell, G. R., Smoothness of inertial manifolds (1988), preprint
[6] Constantin, P.; Foias, C.; Nicolaenko, B.; Temam, R., Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0683.58002
[8] Courant, R.; Hilbert, D., (Methods of Mathematical Physics, Vol. II (1962), Wiley-Interscience: Wiley-Interscience New York) · Zbl 0729.00007
[9] Dunford, N.; Schwartz, J. T., Linear Operators. Part I. General Theory (1958), Wiley-Interscience: Wiley-Interscience New York · Zbl 0084.10402
[10] Edmunds, D. E.; Evans, W. D., Spectral Theory and Differential Operators, Oxford Math. Monographs (1987) · Zbl 0628.47017
[11] Ekeland, I.; Temam, R., Convex Analysis and Variational Problems (1976), North-Holland: North-Holland Amsterdam · Zbl 0322.90046
[12] Foias, C.; Sell, G. R.; Temam, R., J. Differential Equations, 73, 309-353 (1988) · Zbl 0643.58004
[13] Foias, C.; Sell, G. R.; Titi, E. S., Exponential tracking and approximation of inertial manifolds for dissipative equations, J. Dynamics and Differential Equations, 1, 199-244 (1989) · Zbl 0692.35053
[14] Foias, C.; Temam, R., Some analytic and geometric properties of the solutions of the Navier-Stokes equations, J. Math. Pures Appl., 58, 339-368 (1979) · Zbl 0454.35073
[15] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0691.35001
[16] Hadamard, J., Sur l’iteration et les solutions asymptotiques des équations différentielles, Bull. Soc. Math. France, 29, 224-228 (1901) · JFM 32.0314.01
[17] Hale, J. K., Asymptotic Behavior of Dissipative Systems (1988), Amer. Math. Soc: Amer. Math. Soc Providence, RI · Zbl 0642.58013
[18] Henry, D., Geometric theory of semilinear parabolic equations, (Lecture Notes in Mathematics, Vol. 840 (1981), Springer-Verlag: Springer-Verlag New York) · Zbl 0456.35001
[19] Luskin, M.; Sell, G. R., Approximation theories for inertial manifolds, Mathematical Modelling and Numerical Analysis, 23, 445-461 (1989) · Zbl 0688.58035
[20] Luskin, M.; Sell, G. R., Parabolic regularization and inertial manifolds (1988), preprint
[21] Luskin, M.; Sell, G. R., The construction of inertial manifolds for reaction-diffusion equations by elliptic regularization, IMA Preprint Series 583 (1989)
[22] Lyapunov, A. M., Problème géneral de la stabilité du mouvement, (Annals of Mathematical Studies, Vol. 17 (1947), Princeton University Press: Princeton University Press Princeton, NJ) · Zbl 0041.32204
[23] Mallet-Paret, J., Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations, 22, 331-348 (1976) · Zbl 0354.34072
[24] Mallet-Paret, J.; Sell, G. R., J. Amer. Math. Soc., 1, 805-866 (1988) · Zbl 0674.35049
[25] Mañé, R., Reduction of semilinear parabolic equations to finite dimensional \(C^1\) flows, (Geometry and Topology. Geometry and Topology, Lecture Notes in Mathematics, Vol. 597 (1977), Springer-Verlag: Springer-Verlag New York), 361-378 · Zbl 0412.35049
[26] Mañé, R., On the dimension of the compact invariant sets of certain nonlinear maps, (Lecture Notes in Mathematics, Vol. 898 (1981), Springer-Verlag: Springer-Verlag New York), 230-242 · Zbl 0544.58014
[27] Naylor, A. W.; Sell, G. R., Linear operator theory in engineering and science, (Applied Mathematical Sciences, Series, Vol. 40 (1982), Springer-Verlag: Springer-Verlag New York) · Zbl 0945.47001
[28] Perron, O., Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Math. Z., 29, 129-160 (1928) · JFM 54.0456.04
[29] perron, O., Die Stabilitätsfrage bei Differentialgleichungen, Math. Z., 32, 703-728 (1930) · JFM 56.1040.01
[30] Sacker, R. J., On invariant surfaces and bifurcation of periodic solutions of ordinary differential equations, NYU Preprint 333 (October 1964)
[31] Sacker, R. J., A new approach to the perturbation theory of invariant surfaces, Comm. Pure Appl. Math., 18, 717-732 (1965) · Zbl 0133.35501
[32] Stein, E. M., Singular Integrals and Differentiability Properties of Functions (1970), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0207.13501
[33] Temam, R., Infinite Dimensional Dynamical Systems in Mechanics and Physics (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0662.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.