×

Thermal lattice Boltzmann study of three-dimensional bubble growth in quiescent liquid. (English) Zbl 1390.76860

Summary: The complete growth process of a single bubble in quiescent liquid is simulated using a three-dimensional hybrid thermal lattice Boltzmann model. The non-equilibrium extrapolation pressure boundary condition is extended to handle the thermal multiphase flow. Unfavorable spurious currents are usually generated in the vicinity of curved interfaces when two-phase lattice Boltzmann methods are applied. Here a level-set scheme is incorporated into the simulations to accurately represent interfacial dynamics. The phase change is controlled by an equation of state automatically instead of any artificial phase change model. Hence, the present simulation is more accurate and thermodynamically consistent. The temperature, velocity fields during the bubble growth are consistent with relevant theories. The bubble growth rate obtained from the lattice Boltzmann simulations agree well with the analytical solutions. The result shows that the present scheme is able to simulate the relevant thermal bubble dynamics quantitatively.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76M28 Particle methods and lattice-gas methods
Full Text: DOI

References:

[1] Tong, L. S.; Tang, Y. S., Boiling heat transfer and two-phase flow, (1997), CRC press
[2] Lee, H. C.; Do Oh, B.; Bae, S. W.; Kim, M. H., Single bubble growth in saturated pool boiling on a constant wall temperature surface, Int J Multiphase Flow, 29, 12, 1857-1874, (2003) · Zbl 1136.76557
[3] Mukherjee, A.; Dhir, V., Study of lateral merger of vapor bubbles during nucleate pool boiling, Trans ASME, J Heat Transfer, 126, 6, 1023-1039, (2004)
[4] Forster, H.; Zuber, N., Growth of a vapor bubble in a superheated liquid, J Appl Phys, 25, 4, 474-478, (1954) · Zbl 0056.20504
[5] Chesters, A., An analytical solution for the profile and volume of a small drop or bubble symmetrical about a vertical axis, J Fluid Mech, 81, 04, 609-624, (1977) · Zbl 0389.76016
[6] Prosperetti, A.; Plesset, M. S., Vapour-bubble growth in a superheated liquid, J Fluid Mech, 85, 02, 349-368, (1978)
[7] Son, G.; Dhir, V., Numerical simulation of saturated film boiling on a horizontal surface, Trans ASME, J Heat Transfer, 119, 525-533, (1997)
[8] Welch, S. W.; Wilson, J., A volume of fluid based method for fluid flows with phase change, J Comput Phys, 160, 2, 662-682, (2000) · Zbl 0962.76068
[9] Ling, K.; Li, Z.-Y.; Tao, W.-Q., A direct numerical simulation for nucleate boiling by the voset method, Numer Heat Transfer, Part A, 65, 10, 949-971, (2014)
[10] Yoon, H. Y.; Koshizuka, S.; Oka, Y., Direct calculation of bubble growth, departure, and rise in nucleate pool boiling, Int J Multiphase Flow, 27, 2, 277-298, (2001) · Zbl 1137.76794
[11] Házi, G.; Markus, A., On the bubble departure diameter and release frequency based on numerical simulation results, Int J Heat Mass Transf, 52, 5, 1472-1480, (2009) · Zbl 1157.80335
[12] Shan, X.; Doolen, G., Multicomponent lattice-Boltzmann model with interparticle interaction, J Stat Phys, 81, 1, 379-393, (1995) · Zbl 1106.82358
[13] Benzi, R.; Biferale, L.; Sbragaglia, M.; Succi, S.; Toschi, F., Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle, Phys RevE, 74, 2, 021509, (2006)
[14] Inamuro, T.; Ogata, T.; Tajima, S.; Konishi, N., A lattice Boltzmann method for incompressible two-phase flows with large density differences, J Comput Phys, 198, 2, 628-644, (2004) · Zbl 1116.76415
[15] Cheng, M.; Hua, J.; Lou, J., Simulation of bubble-bubble interaction using a lattice Boltzmann method, Comput Fluids, 39, 2, 260-270, (2010) · Zbl 1242.76327
[16] Amaya-Bower, L.; Lee, T., Single bubble rising dynamics for moderate Reynolds number using lattice Boltzmann method, Comput Fluids, 39, 7, 1191-1207, (2010) · Zbl 1242.76264
[17] Gunstensen, A. K.; Rothman, D. H.; Zaleski, S.; Zanetti, G., Lattice Boltzmann model of immiscible fluids, Phys Rev A, 43, 8, 4320, (1991)
[18] Rothman, D. H.; Keller, J. M., Immiscible cellular-automaton fluids, J Stat Phys, 52, 3, 1119-1127, (1988) · Zbl 1084.82504
[19] Shan, X.; Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys Revi E, 47, 3, 1815, (1993)
[20] Swift, M. R.; Orlandini, E.; Osborn, W. R.; Yeomans, J. M., Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Phys Rev E, 54, 5, 5041-5052, (1996)
[21] He, X.; Chen, S.; Zhang, R., A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J Comput Phys, 152, 2, 642-663, (1999) · Zbl 0954.76076
[22] Safari, H.; Rahimian, M. H.; Krafczyk, M., Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method, Phys Rev E, 90, 3, 033305, (2014)
[23] Ryu, S.; Ko, S., Direct numerical simulation of nucleate pool boiling using a two-dimensional lattice Boltzmann method, Nucl Eng Des, 248, 248-262, (2012)
[24] Lee, T.; Liu, L., Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces, J Comput Phys, 229, 20, 8045-8063, (2010) · Zbl 1426.76603
[25] Li, Q.; Kang, Q.; Francois, M. M.; He, Y.; Luo, K., Lattice Boltzmann modeling of boiling heat transfer: the boiling curve and the effects of wettability, Int J Heat Mass Transf, 85, 787-796, (2015)
[26] Markus, A.; Házi, G., Simulation of evaporation by an extension of the pseudopotential lattice Boltzmann method: a quantitative analysis, Physical Review E, 83, 4, (2011)
[27] Biferale, L.; Perlekar, P.; Sbragaglia, M.; Toschi, F., Convection in multiphase fluid flows using lattice Boltzmann methods, Phys Rev Lett, 108, 10, 104502, (2012)
[28] Gong, S.; Cheng, P., A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer, Int J Heat Mass Transf, 55, 17, 4923-4927, (2012)
[29] Gong, S.; Cheng, P., Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling, Int J Heat Mass Transf, 64, 122-132, (2013)
[30] Fang, W.-Z.; Chen, L.; Kang, Q.-J.; Tao, W.-Q., Lattice Boltzmann modeling of pool boiling with large liquid-gas density ratio, Int J Therm Sci, 114, 172-183, (2017)
[31] Palmer, B. J.; Rector, D. R., Lattice-Boltzmann algorithm for simulating thermal two-phase flow, Phys Rev E, 61, 5, 5295, (2000)
[32] Albernaz, D. L.; Amberg, G.; Do-Quang, M., Simulation of a suspended droplet under evaporation with Marangoni effects, Int J Heat Mass Transf, 97, 853-860, (2016)
[33] Chen, X.-P.; Zhong, C.-W.; Yuan, X.-L., Lattice Boltzmann simulation of cavitating bubble growth with large density ratio, Comput Math Appl, 61, 12, 3577-3584, (2011) · Zbl 1225.76225
[34] Zheng, H. W.; Shu, C.; Chew, Y. T., A lattice Boltzmann model for multiphase flows with large density ratio, J Comput Phys, 218, 1, 353-371, (2006) · Zbl 1158.76419
[35] Dong, Z.; Li, W.; Song, Y., A numerical investigation of bubble growth on and departure from a superheated wall by lattice Boltzmann method, Int J Heat Mass Transf, 53, 21, 4908-4916, (2010) · Zbl 1197.80037
[36] Martys, N. S.; Chen, H., Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method, Phys Rev E, 53, 1, 743, (1996)
[37] Shan, X.; Chen, H., Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys Rev E, 49, 4, 2941, (1994)
[38] Yuan, P.; Schaefer, L., Equations of state in a lattice Boltzmann model, Phys Fluids, 18, 4, 042101, (2006) · Zbl 1185.76872
[39] Mcclure, J. E.; Berrill, M.; Gray, W.; Miller, C., Tracking interface and common curve dynamics for two-fluid flow in porous media, J Fluid Mech, 796, 211-232, (2016) · Zbl 1462.76183
[40] Sbragaglia, M.; Benzi, R.; Biferale, L.; Succi, S.; Sugiyama, K.; Toschi, F., Generalized lattice Boltzmann method with multirange pseudopotential, Phys Revi E, 75, 2, 026702, (2007)
[41] Guo, Z. L.; Zheng, C. G.; Shi, B. C., Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method, Chin Phys, 11, 4, 366-374, (2002)
[42] Huang, H.; Sukop, M.; Lu, X., Multiphase lattice Boltzmann methods: theory and application, (2015), John Wiley & Sons
[43] Brennen, C. E., Cavitation and bubble dynamics, (2013), Cambridge University Press
[44] Kuo, K. K., Principles of combustion, (1986), John Wiley & Sons, Inc · Zbl 1050.80503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.