×

Tightness results for infinite-slit limits of the chordal Loewner equation. (English) Zbl 1390.60303

Summary: In this note, we consider a multi-slit Loewner equation with constant coefficients that describes the growth of multiple SLE curves connecting \(N\) points on \(\mathbb {R}\) to infinity within the upper half-plane. For every \(N\in \mathbb {N}\), this equation yields a measure-valued process \(t\mapsto \{\alpha _{N,t}\},\) and we are interested in the limit behaviour as \(N\rightarrow \infty .\) We prove tightness of the sequence \(\{\alpha _{N,t}\}_{N\in \mathbb {N}}\) under certain assumptions and address some further problems. Moreover, we investigate a similar situation in which all slits are trajectories of a certain quadratic differential.

MSC:

60J67 Stochastic (Schramm-)Loewner evolution (SLE)
37L05 General theory of infinite-dimensional dissipative dynamical systems, nonlinear semigroups, evolution equations

References:

[1] Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge University Press, Cambridge (2010) · Zbl 1184.15023
[2] Arizmendi, O., Pérez-Abreu, V.: The \[SS\]-Transform of Symmetric Probability Measures with Unbounded Supports. Proc. Am. Math. Soc. 137(9), 3057-3066 (2009) · Zbl 1178.46062 · doi:10.1090/S0002-9939-09-09841-4
[3] Bauer, R.O.: Löwner’s Equation from a Noncommutative Probability Perspective. J. Theor. Probab. 17(2), 435-456 (2004) · Zbl 1055.46043 · doi:10.1023/B:JOTP.0000020702.23996.8f
[4] Bonami, A., Bouchut, F., Cépa, E., Lépingle, D.: A Nonlinear Stochastic Differential Equation Involving the Hilbert Transform. J. Funct. Anal. 165(2), 390-406 (1999) · Zbl 0935.60095 · doi:10.1006/jfan.1999.3420
[5] Bauer, M., Bernard, D., Kytölä, K.: Multiple Schramm-Loewner evolutions and statistical mechanics martingales. J. Stat. Phys. 120(5-6), 1125-1163 (2005) · Zbl 1094.82016 · doi:10.1007/s10955-005-7002-5
[6] Billingsley, P.: Convergence of Probability Measures, Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. Wiley, New York (1999) · Zbl 0944.60003 · doi:10.1002/9780470316962
[7] Bercovici, H., Voiculescu, D.: Free Convolution of Measures with Unbounded Support. Indiana Univ. Math. J. 42(3), 733-773 (1993) · Zbl 0806.46070 · doi:10.1512/iumj.1993.42.42033
[8] Cardy, J.: Stochastic Loewner Evolution and Dyson’s Circular Ensembles. J. Phys. A 36(24), L379-L386 (2003) · Zbl 1038.82074 · doi:10.1088/0305-4470/36/24/101
[9] Chan, T.: The Wigner Semi-Circle Law and Eigenvalues of Matrix-Valued Diffusions. Probab. Theory Relat. Fields 93(2), 249-272 (1992) · Zbl 0767.60050 · doi:10.1007/BF01195231
[10] Cépa, E., Lépingle, D.: Diffusing Particles with Electrostatic Repulsion. Probab. Theory Relat. Fields 107(4), 429-449 (1997) · Zbl 0883.60089 · doi:10.1007/s004400050092
[11] Cépa, E., Lépingle, D.: Brownian Particles with Electrostatic Repulsion on the Circle: Dyson’S Model for Unitary Random Matrices Revisited. ESAIM Probab. Stat. 5, 203-224 (2001) (electronic) · Zbl 1002.60093
[12] Del Monaco, A., Schleißinger, S.: Multiple SLE and the Complex Burgers Equation. Math. Nachrichten (2016) (to appear) · Zbl 1360.30009
[13] Dubédat, J.: Commutation Relations for Schramm-Loewner Evolutions. Commun. Pure Appl. Math. 60(12), 1792-1847 (2007) · Zbl 1137.82009 · doi:10.1002/cpa.20191
[14] Flores, S.M., Kleban, P.: A Solution Space for a System of Null-State Partial Differential Equations: Part 1. Commun. Math. Phys. 333(1), 389-434 (2015) · Zbl 1314.35188 · doi:10.1007/s00220-014-2189-4
[15] Flores, S.M., Kleban, P.: A Solution Space for a System of Null-State Partial Differential Equations: Part 2. Commun. Math. Phys. 333(1), 435-481 (2015) · Zbl 1314.35189 · doi:10.1007/s00220-014-2185-8
[16] Flores, S.M., Kleban, P.: A Solution Space for a System of Null-State Partial Differential Equations: Part 3. Commun. Math. Phys. 333(2), 597-667 (2015) · Zbl 1311.35314 · doi:10.1007/s00220-014-2190-y
[17] Flores, S.M., Kleban, P.: A Solution Space for a System of Null-State Partial Differential Equations: Part 4. Commun. Math. Phys. 333(2), 669-715 (2015) · Zbl 1314.35190 · doi:10.1007/s00220-014-2180-0
[18] Gärtner, J.: On the McKean-Vlasov Limit for Interacting Diffusions. Math. Nachr. 137, 197-248 (1988) · Zbl 0678.60100 · doi:10.1002/mana.19881370116
[19] Graham, K.: On Multiple Schramm-Loewner Evolutions. J. Stat. Mech Theory Exp 2007(03), P03008 (2007) · Zbl 1456.60213 · doi:10.1088/1742-5468/2007/03/P03008
[20] Johansson Viklund, F., Sola, A., Turner, A.: Scaling Limits of Anisotropic Hastings-Levitov Clusters. Ann. Inst. Henri Poincaré Probab. Stat. 48(1), 235-257 (2012) · Zbl 1251.82025 · doi:10.1214/10-AIHP395
[21] Kozdron, M.J., Lawler, G.F.: The Configurational Measure on Mutually Avoiding SLE Paths, Universality and Renormalization, Fields Inst. Commun., vol. 50, pp. 199-224. American Mathematical Society, Providence, RI (2007) · Zbl 1133.60023
[22] Kozdron, M.J.: Using the Schramm-Loewner Evolution to Explain Certain Non-Local Observables in the 2D Critical using Model. J. Phys. A 42(26), 265003 (2009) · Zbl 1167.82008 · doi:10.1088/1751-8113/42/26/265003
[23] Kytölä, K., Peltola, E.: Pure Partition Functions of Multiple SLEs (2015). arXiv:1506.02476 · Zbl 1358.82012
[24] Lawler, G.F.: Conformally Invariant Processes in the Plane, Mathematical Surveys and Monographs, vol. 114. American Mathematical Society, Providence, RI (2005) · Zbl 1074.60002
[25] Lawler, G.F.: Defining SLE in multiply connected domains with the Brownian loop measure, arXiv:1108.4364 (2011) · Zbl 0806.46070
[26] Ladde, G.S., Lakshmikantham, V.: Stochastic Differential Inequalities of Itô Type, Applied Stochastic Processes (Proc. Conf., Univ. Georgia, Athens, Ga., 1978), pp. 109-120. Academic Press. New York, London (1980) · Zbl 0767.60050
[27] Marckert, J.-F., Mokkadem, A.: The Depth First Processes of Galton-Watson Trees Converge to the Same Brownian Excursion. Ann. Probab. 31(3), 1655-1678 (2003) · Zbl 1049.05026 · doi:10.1214/aop/1055425793
[28] Miller, J., Sheffield, S.: Quantum Loewner Evolution. Duke Math. J. 165(17), 3241-3378 (2016) · Zbl 1364.82023 · doi:10.1215/00127094-3627096
[29] Pommerenke, C.: Univalent Functions. Vandenhoeck & Ruprecht, Göttingen (1975) · Zbl 0298.30014
[30] Richard, C.: On \[q\] q-Functional Equations and Excursion Moments. Discrete Math. 309(1), 207-230 (2009) · Zbl 1227.39006 · doi:10.1016/j.disc.2007.12.072
[31] Rogers, L.C.G., Shi, Z.: Interacting Brownian Particles and the Wigner Law. Probab. Theory Relat. Fields 95(4), 555-570 (1993) · Zbl 0794.60100 · doi:10.1007/BF01196734
[32] Roth, O., Schleißinger, S.: The Schramm-Loewner Equation for Multiple Slits. J. d’Anal. Math. (2016) (to appear) · Zbl 1383.30003
[33] Schmüdgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space, Graduate Texts in Mathematics, vol. 265. Springer, Dordrecht (2012) · Zbl 1257.47001 · doi:10.1007/978-94-007-4753-1
[34] Schleißinger, S.: The Chordal Loewner Equation and Monotone Probability Theory (2016). arXiv:1605.06689 · Zbl 1376.30004
[35] Selander, G.: Two deterministic growth models related to Diffusion-Limited Aggregation, Doctoral Thesis, Royal Institute of Technology, Stockholm (1999) · Zbl 0794.60100
[36] Tsai, J.: The Loewner Driving Function of Trajectory Arcs of Quadratic Differentials. J. Math. Anal. Appl. 360(2), 561-576 (2009) · Zbl 1177.30059 · doi:10.1016/j.jmaa.2009.07.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.