×

Brownian particles with electrostatic repulsion on the circle: Dyson’s model for unitary random matrices revisited. (English) Zbl 1002.60093

The authors extend a Brownian motion model introduced by F. J. Dyson [J. Math. Phys. 3, 1191-1198 (1962; Zbl 0111.32703)] for the eigenvalues of unitary random matrices \(N\times N\) which is interpreted as a system of \(N\) interacting Brownian particles on the circle with electrostatic inter-particles repulsion. The aim of this paper is to define the finite particle system in a general setting including collisions between particles. Then, they study the behaviour of this system when the number of particles \(N\) goes to infinity (through the empirical measure process). Furthermore it is shown that a limiting measure-valued process exists and is the unique solution of a deterministic second-order PDE. The uniform law on \([-\pi; \pi]\) is the only limiting distribution of \(\mu_t\) when \(t\) goes to infinity and \(\mu_t\) has an analytical density.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60J65 Brownian motion
82B31 Stochastic methods applied to problems in equilibrium statistical mechanics

Citations:

Zbl 0111.32703

References:

[1] A. Bonami , F. Bouchut , E. Cépa and D. Lépingle , A nonlinear SDE involving Hilbert transform . J. Funct. Anal. 165 ( 1999 ) 390 - 406 . MR 1698948 | Zbl 0935.60095 · Zbl 0935.60095 · doi:10.1006/jfan.1999.3420
[2] E. Cépa , Équations différentielles stochastiques multivoques . Sémin. Probab. XXIX ( 1995 ) 86 - 107 . Numdam | MR 1459451 | Zbl 0833.60079 · Zbl 0833.60079
[3] E. Cépa , Problème de Skorohod multivoque . Ann. Probab. 26 ( 1998 ) 500 - 532 . Article | MR 1626174 | Zbl 0937.34046 · Zbl 0937.34046 · doi:10.1214/aop/1022855642
[4] E. Cépa and D. Lépingle , Diffusing particles with electrostatic repulsion . Probab. Theory Related Fields 107 ( 1997 ) 429 - 449 . MR 1440140 | Zbl 0883.60089 · Zbl 0883.60089 · doi:10.1007/s004400050092
[5] T. Chan , The Wigner semi-circle law and eigenvalues of matrix-valued diffusions . Probab. Theory Related Fields 93 ( 1992 ) 249 - 272 . MR 1176727 | Zbl 0767.60050 · Zbl 0767.60050 · doi:10.1007/BF01195231
[6] B. Duplantier , G.F. Lawler , J.F. Le Gall and T.J. Lyons , The geometry of Brownian curve . Bull. Sci. Math. 2 ( 1993 ) 91 - 106 . MR 1205413 | Zbl 0778.60058 · Zbl 0778.60058
[7] F.J. Dyson , A Brownian motion model for the eigenvalues of a random matrix . J. Math. Phys. 3 1191 - 1198 . MR 148397 | Zbl 0111.32703 · Zbl 0111.32703 · doi:10.1063/1.1703862
[8] W. Feller , Diffusion processes in one dimension . Trans. Amer. Math. Soc. 77 ( 1954 ) 1 - 31 . MR 63607 | Zbl 0059.11601 · Zbl 0059.11601 · doi:10.2307/1990677
[9] D.J. Grabiner , Brownian motion in a Weyl chamber, non-colliding particles, and random matrices . Ann. Inst. H. Poincaré 35 ( 1999 ) 177 - 204 . Numdam | MR 1678525 | Zbl 0937.60075 · Zbl 0937.60075 · doi:10.1016/S0246-0203(99)80010-7
[10] D. Hobson and W. Werner , Non-colliding Brownian motion on the circle . Bull. London Math. Soc. 28 ( 1996 ) 643 - 650 . MR 1405497 | Zbl 0853.60060 · Zbl 0853.60060 · doi:10.1112/blms/28.6.643
[11] I. Karatzas and S.E. Shreve , Brownian motion and stochastic calculus . Springer, Berlin Heidelberg New York ( 1988 ). MR 917065 | Zbl 0638.60065 · Zbl 0638.60065
[12] P.L. Lions and A.S. Sznitman , Stochastic differential equations with reflecting boundary conditions . Comm. Pure Appl. Math. 37 ( 1984 ) 511 - 537 . MR 745330 | Zbl 0598.60060 · Zbl 0598.60060 · doi:10.1002/cpa.3160370408
[13] H.P. McKean , Stochastic integrals . Academic Press, New York ( 1969 ). MR 247684 | Zbl 0191.46603 · Zbl 0191.46603
[14] M.L. Mehta , Random matrices . Academic Press, New York ( 1991 ). MR 1083764 | Zbl 0780.60014 · Zbl 0780.60014
[15] M. Metivier , Quelques problèmes liés aux systèmes infinis de particules et leurs limites . Sémin. Probab. XX ( 1986 ) 426 - 446 . Numdam | MR 942037 | Zbl 0622.60112 · Zbl 0622.60112
[16] M. Nagasawa and H. Tanaka , A diffusion process in a singular mean-drift field . Z. Wahrsch. Verw. Gebiete 68 ( 1985 ) 247 - 269 . MR 771466 | Zbl 0558.60060 · Zbl 0558.60060 · doi:10.1007/BF00532640
[17] R.G. Pinsky , On the convergence of diffusion processes conditioned to remain in a bounded region for large times to limiting positive recurrent diffusion processes . Ann. Probab. 13 ( 1985 ) 363 - 378 . Article | MR 781410 | Zbl 0567.60076 · Zbl 0567.60076 · doi:10.1214/aop/1176992996
[18] D. Revuz and M. Yor , Continuous martingales and Brownian motion . Springer Verlag, Berlin Heidelberg ( 1991 ). MR 1083357 | Zbl 0731.60002 · Zbl 0731.60002
[19] L.C.G. Rogers and Z. Shi , Interacting Brownian particles and the Wigner law . Probab. Theory Related Fields 95 ( 1993 ) 555 - 570 . MR 1217451 | Zbl 0794.60100 · Zbl 0794.60100 · doi:10.1007/BF01196734
[20] L.C.G. Rogers and D. Williams , Diffusions , Markov processes and Martingales. Wiley and Sons, New York ( 1987 ). MR 921238 | Zbl 0826.60002 · Zbl 0826.60002
[21] Y. Saisho , Stochastic differential equations for multidimensional domains with reflecting boundary . Probab. Theory Related Fields 74 ( 1987 ) 455 - 477 . MR 873889 | Zbl 0591.60049 · Zbl 0591.60049 · doi:10.1007/BF00699100
[22] H. Spohn , Dyson’s model of interacting Brownian motions at arbitrary coupling strength . Markov Process. Related Fields 4 ( 1998 ) 649 - 661 . Zbl 0927.60086 · Zbl 0927.60086
[23] A.S. Sznitman , Topics in propagation of chaos . École d’été Probab. Saint-Flour XIX ( 1991 ) 167 - 251 . Zbl 0732.60114 · Zbl 0732.60114
[24] H. Tanaka , Stochastic differential equations with reflecting boundary conditions in convex regions . Hiroshima Math. J. 9 ( 1979 ) 163 - 177 . Article | MR 529332 | Zbl 0423.60055 · Zbl 0423.60055
[25] D. Voiculescu , Lectures on free probability theory . École d’été Probab. Saint-Flour ( 1998 ). Zbl 1015.46037 · Zbl 1015.46037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.