×

Dimensional contraction in Wasserstein distance for diffusion semigroups on a Riemannian manifold. (English) Zbl 1390.58021

The paper concerns dimension-curvature conditions and contraction properties of the heat semigroup \(P_{t}\) on Riemannian manifolds with respect to the Wasserstein distance \(W_{2}\) between probability measures. One of the first results in this direction is by M.-K. von Renesse and K.-T. Sturm [Commun. Pure Appl. Math. 58, No. 7, 923–940 (2005; Zbl 1078.53028)], who showed that on a complete Riemannian manifold the Ricci curvature being bounded by \(K\) is equivalent to \(W_{2}^{2}\left( P_{t}fdx, P_{t}gdx \right)\leqslant e^{-2Kt}W_{2}^{2}\left( fdx, gdx \right)\), where \(dx\) is the Riemannian volume element, and \(f, g\) are probability densities.
The current paper deals with one of the directions of this equivalence proving that a curvature-dimension inequality implies a contraction property involving both a curvature bound and a dimension for a weighted compact Riemannian manifold. The author uses the Benamou-Brenier dynamical formulation of the Wasserstein distance to get a dimensional estimate on the Hodge-de Rham semigroup. This is the semigroup with the generator being the Hodge-de Rham operator on forms, and the estimates rely on the Bochner-Lichnerowicz-Weitzenböck identity for \(1\)-forms.

MSC:

58J65 Diffusion processes and stochastic analysis on manifolds
58J35 Heat and other parabolic equation methods for PDEs on manifolds
53B21 Methods of local Riemannian geometry

Citations:

Zbl 1078.53028

References:

[1] Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C., Scheffer, G.: Sur les inégalités de Sobolev logarithmiques of Panoramas et Synthèses, vol. 10. Société Mathematical de France, Paris (2000) · Zbl 0982.46026
[2] Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematical ETH Zürich. Birkhäuser, Basel (2008) · Zbl 1145.35001
[3] Bakry, D.: Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée. In: 21th of Lecture Notes in Mathematical Séminaire de Probabilités, vol. 1247, pp 137-172. Springer, Berlin (1987) · Zbl 0629.58018
[4] Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. In: Lectures on Probability Theory of Lecture Notes in Mathematical (Saint-Flour, 1992), vol. 1581, pp 1-114. Springer, Berlin (1994) · Zbl 0856.47026
[5] Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375-393 (2000) · Zbl 0968.76069 · doi:10.1007/s002110050002
[6] Bolley, F., Gentil, I., Guillin, A.: Dimensional contraction via Markov transportation distance. J. Lond. Math. Soc. 90(1), 309-332 (2014) · Zbl 1312.47055 · doi:10.1112/jlms/jdu027
[7] Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators of Grund. Math. Wiss., vol. 348. Springer, Berlin (2014) · Zbl 1376.60002 · doi:10.1007/978-3-319-00227-9
[8] Bakry, D., Gentil, I., Ledoux, M.: On Harnack inequality and optimal transportation. To appear in Ann. Sc. Norm. Sup. Pisa · Zbl 1331.35151
[9] Dolbeault, J., Nazaret, B., Savaré, G.: A new class of transport distances between measures. Calc. Var. Part. Diff. Eq. 34(2), 193-231 (2009) · Zbl 1157.49042 · doi:10.1007/s00526-008-0182-5
[10] Dolbeault, J., Nazaret, B., Savaré, G.: From Poincaré to logarithmic sobolev inequalities: a gradient flow approach. SIAM J. Math. Anal. 44(5), 3186-3216 (2012) · Zbl 1264.26011 · doi:10.1137/110835190
[11] De Pascale, L., Gelli, M.S., Granieri, L.: Minimal measures, one-dimensional currents and the Monge-Kantorovich problem. Calc. Var. 27(1), 1-23 (2006) · Zbl 1096.37033 · doi:10.1007/s00526-006-0017-1
[12] Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. To appear in Inventiones Mathematicae · Zbl 1329.53059
[13] Gigli, N., Kuwada, K., Ohta, S.-I.: Heat flow on Alexandrov spaces. Comm. Pure Appl. Math. 66(3), 307-331 (2013) · Zbl 1267.58014 · doi:10.1002/cpa.21431
[14] Kuwada, K.: Duality on gradient estimates and Wasserstein controls. J. Funct. Anal. 258(11), 3758-3774 (2010) · Zbl 1194.53032 · doi:10.1016/j.jfa.2010.01.010
[15] Kuwada, K.: Space-time Wasserstein controls and Bakry-Ledoux type gradient estimates. To appear in Calculus of Variations and Partial Differential Equations · Zbl 1386.60273
[16] Lichnerowicz, A.: Géométrie des groupes de transformations. In: Travaux et Recherches Mathématiques, vol. III. Dunod, Paris (1958) · Zbl 0096.16001
[17] Otto, F., Westdickenberg, M.: Eulerian calculus for the contraction in the Wasserstein distance. SIAM J. Math. Anal. 37(4), 1227-1255 (2005) · Zbl 1094.58016 · doi:10.1137/050622420
[18] Savaré, G.: Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD(K, ∞) metric measure spaces. Discrete Contin. Dyn. Syst. 34(4), 1641-1661 (2014) · Zbl 1275.49087 · doi:10.3934/dcds.2014.34.1641
[19] Villani, C.: Optimal Transport, Old and New of Grund. Math. Wiss, vol. 338. Springer, Berlin (2009) · Zbl 1156.53003
[20] von Renesse, M.-K., Sturm, K.-T.: Transport inequalities, gradient estimates, entropy and Ricci curvature. Comm. Pure Appl. Math. 68, 923-940 (2005) · Zbl 1078.53028 · doi:10.1002/cpa.20060
[21] Wang, F.-Y.: Functional Inequalities, Markov Processes, and Spectral Theory. Science Press, Beijing (2004)
[22] Wang, F.-Y.: Equivalent semigroup properties for the curvature-dimension condition. Bull. Sci. Math. 135(6-7), 803-815 (2011) · Zbl 1230.60083 · doi:10.1016/j.bulsci.2011.07.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.