×

The Hurwitz-type theorem for the regular Coulomb wave function via Hankel determinants. (English) Zbl 1390.15018

Summary: We derive a closed formula for the determinant of the Hankel matrix whose entries are given by sums of negative powers of the zeros of the regular Coulomb wave function. This new identity applied together with results of J. Grommer [J. Reine Angew. Math. 144, 114–165 (1914; JFM 45.0650.02)] and N. Tschebotareff [Math. Ann. 99, 660–686 (1928; JFM 54.0351.02)] allows us to prove a Hurwitz-type theorem about the zeros of the regular Coulomb wave function. As a particular case, we obtain a new proof of the classical Hurwitz’s theorem from the theory of Bessel functions that is based on algebraic arguments. In addition, several Hankel determinants with entries given by the Rayleigh function and Bernoulli numbers are also evaluated.

MSC:

15A15 Determinants, permanents, traces, other special matrix functions
33C15 Confluent hypergeometric functions, Whittaker functions, \({}_1F_1\)
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, vol. 55 (1964), U.S. Government Printing Office: U.S. Government Printing Office Washington, D.C., For sale by the Superintendent of Documents · Zbl 0171.38503
[2] Baricz, A., Turán type inequalities for regular Coulomb wave functions, J. Math. Anal. Appl., 430, 1, 166-180 (2015) · Zbl 1318.33039
[3] Barnett, A. R.; Feng, D. H.; Steed, J. W.; Goldfarb, L. J.B., Coulomb wave functions for all real \(η\) and \(ρ\), Comput. Phys. Commun., 8, 377-395 (1974)
[4] Chebotarev, N. G.; Meĭman, N. N., The Routh-Hurwitz problem for polynomials and entire functions. Real quasipolynomials with \(r = 3, s = 1\), Tr. Mat. Inst. Steklova, 26, 331 (1949), Appendix by G.S. Barhin and A.N. Hovanskiĭ · Zbl 0041.19801
[5] Chihara, T. S., An Introduction to Orthogonal Polynomials, Mathematics and Its Applications, vol. 13 (1978), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers New York-London-Paris · Zbl 0389.33008
[6] Dumont, D.; Zeng, J., Further results on the Euler and Genocchi numbers, Aequationes Math., 47, 1, 31-42 (1994) · Zbl 0805.11024
[7] Dzieciol, A.; Yngve, S.; Fröman, P. O., Coulomb wave functions with complex values of the variable and the parameters, J. Math. Phys., 40, 12, 6145-6166 (1999) · Zbl 0967.81023
[8] Grommer, J., Ganze transzendente Funktionen mit lauter reellen Nullstellen, J. Reine Angew. Math., 144, 114-166 (1914) · JFM 45.0650.02
[9] Hermite, C., Extrait d’une lettre de Mr. Ch. Hermite de Paris à Mr. Borchardt de Berlin sur le nombre des racines d’une équation algébrique comprises entre des limites données, J. Reine Angew. Math., 52, 39-51 (1856) · ERAM 052.1365cj
[10] Hilb, E., Die komplexen Nullstellen der Besselschen Funktionen, Math. Z., 15, 1, 274-279 (1922) · JFM 48.0420.02
[11] Hille, E.; Szegő, G., On the complex zeros of the Bessel functions, Bull. Amer. Math. Soc., 49, 605-610 (1943) · Zbl 0063.02018
[12] Holtz, O.; Tyaglov, M., Structured matrices, continued fractions, and root localization of polynomials, SIAM Rev., 54, 3, 421-509 (2012) · Zbl 1261.26001
[13] Humblet, J., Analytical structure and properties of Coulomb wave functions for real and complex energies, Ann. Physics, 155, 2, 461-493 (1984)
[14] Hurwitz, A., Über die Nullstellen der Besselschen Function, Math. Ann., 33, 2, 246-266 (1888) · JFM 20.0502.02
[15] Ikebe, Y., The zeros of regular Coulomb wave functions and of their derivatives, Math. Comp., 29, 878-887 (1975) · Zbl 0308.65015
[16] Jones, W. B.; Thron, W. J., Continued fractions, (Analytic Theory and Applications. Analytic Theory and Applications, Encyclopedia of Mathematics and Its Applications, vol. 11 (1980), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, Mass), With a foreword by Felix E. Browder, With an introduction by Peter Henrici · Zbl 0603.30009
[17] Ki, H.; Kim, Y.-O., On the number of nonreal zeros of real entire functions and the Fourier-Pólya conjecture, Duke Math. J., 104, 1, 45-73 (2000) · Zbl 0957.30019
[18] Kishore, N., The Rayleigh function, Proc. Amer. Math. Soc., 14, 527-533 (1963) · Zbl 0117.29904
[19] Krattenthaler, C., Advanced determinant calculus, Sém. Lothar. Combin., 42, Article B42q pp. (1999), The Andrews Festschrift (Maratea, 1998) · Zbl 0923.05007
[20] Kreĭn, M. G., Concerning a special class of entire and meromorphic functions, (Aheizer, N. I.; Kreĭn, M. G., Some Questions in the Theory of Moments. Some Questions in the Theory of Moments, Translations of Mathematical Monographs, vol. 2 (1962), American Mathematical Society: American Mathematical Society Providence, R.I.), Translated by W. Fleming, D. Prill · Zbl 0117.32702
[21] Kreĭn, M. G.; Langer, H., Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume \(\Pi_\kappa\) zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen, Math. Nachr., 77, 187-236 (1977) · Zbl 0412.30020
[22] Kytmanov, A. M.; Khodos, O. V., On localization of zeros of an entire function of finite order of growth, Complex Anal. Oper. Theory, 11, 2, 393-416 (2017) · Zbl 1361.30043
[23] Obreschkoff, N., Über die Nullstellen der Besselschen Function, Jahresber. Dtsch. Math. Ver., 38, 156-161 (1929) · JFM 55.0222.06
[24] Peyerimhoff, A., On the zeros of power series, Michigan Math. J., 13, 193-214 (1966) · Zbl 0158.06403
[25] Pólya, G., Über einen Satz von Laguerre, Jahresber. Dtsch. Math.-Ver., 38, 161-168 (1929) · JFM 55.0777.02
[26] Runckel, H.-J., Zeros of entire functions, Trans. Amer. Math. Soc., 143, 343-362 (1969) · Zbl 0189.36007
[27] Štampach, F.; Šťovíček, P., Orthogonal polynomials associated with Coulomb wave functions, J. Math. Anal. Appl., 419, 1, 231-254 (2014) · Zbl 1295.42009
[28] Thompson, I. J.; Barnett, A. R., Coulomb and Bessel functions of complex arguments and order, J. Comput. Phys., 64, 2, 490-509 (1986) · Zbl 0626.65014
[29] Tschebotareff, N., Über die Realität von Nullstellen ganzer transzendenter Funktionen, Math. Ann., 99, 1, 660-686 (1928) · JFM 54.0351.02
[30] Watson, G. N., The zeros of Lommel’s polynomials, Proc. Lond. Math. Soc. (3), 19, 4, 266-272 (1920) · JFM 47.0342.01
[31] Zhang, R.; Chen, L.-C., On certain matrices of Bernoulli numbers, Abstr. Appl. Anal., Article 536325 pp. (2014) · Zbl 1474.15083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.