×

Localized upper bounds of heat kernels for diffusions via a multiple Dynkin-Hunt formula. (English) Zbl 1387.60121

The authors study diffusion processes on a locally compact separable metric measure space \((M,d,\mu)\) equipped with a \(\sigma\)-finite Borel measure \(\mu\). The processes are generated by local Dirichlet forms. The main result of the paper is to provide off-diagonal upper bounds for the heat kernel (transition probability density) \(p_t(x,y)\) where \(t\geq 0\) and \(x\), \(y\) are from the state space (up to a negligible set \(N\)). The heat kernel bounds are of the type \[ p_t(x,y) \leq F_t(x,y) \exp\left(-\gamma \left[ t^{-1}d^\beta(x,y)\right]^{1/(\beta-1)}\right) \] where \(\gamma >0\), \(\beta >1\) (\(\beta=1\) is the Gaussian case, \(\beta>2\) appears in connection with diffusions on fractals) and a positive function \(F_t(x,y)\). Typically, \(F_t(x,y)\) is a power function in \(t\) or given by the \(\mu\)-volume of balls around \(x\) and \(y\) with radius \(t^{1/\beta}\).
The main result of the paper states that one can get global heat kernel estimates by restricting the process to an open subset \(U\subset M\) of diameter less or equal than \(R\). More precisely, assume that the following conditions hold
for \((t,x,y), (s,z,w)\in (0,R^\beta]\times U\times U\), \(s\leq t\) one has \[ \frac{F_s(z,w)}{F_t(x,y)} \leq c_F s^{-\alpha_F}\max\{t,d^\beta(x,z), d^\beta(y,w)\}^{\alpha_F}, \]
for \((t,x)\in (0,R^\beta)\times (U\setminus N)\) and any Borel set \(A\subset U\) \[ \mathbb{P}^x(X_t\in A, \tau_U > t) \leq \int_A F_t(x,y)\,\mu(dy), \]
for \((x,r)\in (U\setminus N)\times (0,R)\) such that \(B_r(x)\subset U\) and \(t>0\) \[ \mathbb{P}^x(\tau_{B_r(x)}\leq t) \leq \exp\left[-\gamma r^{\beta/(\beta-1)} t^{-1/(\beta-1)}\right] \]
then the heat kernel has a density \(p_t(x,y)\), \((t,x,y)\in (0,\infty)\times (M \setminus N)\times V\), \(V\) is a certain open neighbourhood of \(U\), and it satisfies a heat kernel estimate of the type indicated above for all (!) \(x\in M\setminus N\) and all \(y\in V\).
The proof uses two main ingredients, a “multiple Dynkin-Hunt formula”, i.e. a formula for the transition semigroup \((P_t)_t\) of the type \[ P_tu(x) = P_t^Uu(x) + \sum_{n=1}^\infty\mathbb{E}^x\left[\mathbf{1}_{\sigma_n\leq t} P_{t-\sigma_n}^Uu(X_{\sigma_n})\right] \] where \((P_t^U)_t\) is the transition semigroup of the process killed upon leaving \(U\) (“part process”) and \(\sigma_n\) is the random time of the \(n\)th re-entering of the original (non-killed) process \(X\) into the set \(U\). In the final section, the authors provide good exit probability estimates for diffusions as needed in the third condition above.

MSC:

60J60 Diffusion processes
35K08 Heat kernel
60J35 Transition functions, generators and resolvents
31C25 Dirichlet forms
28A80 Fractals
60J45 Probabilistic potential theory

References:

[1] Andres, Sebastian; Barlow, Martin T., Energy inequalities for cutoff functions and some applications, J. Reine Angew. Math., 699, 183-215 (2015) · Zbl 1347.31003 · doi:10.1515/crelle-2013-0009
[2] AK S. Andres and N. Kajino, Continuity and estimates of the Liouville heat kernel with applications to spectral dimensions, Probab. Theory Related Fields, in press, DOI 10.1007/s00440-015-0670-4. · Zbl 1353.60073
[3] Barlow, Martin T., Diffusions on fractals. Lectures on probability theory and statistics, Saint-Flour, 1995, Lecture Notes in Math. 1690, 1-121 (1998), Springer, Berlin · Zbl 0916.60069 · doi:10.1007/BFb0092537
[4] Barlow, Martin T.; Bass, Richard F., Transition densities for Brownian motion on the Sierpi\'nski carpet, Probab. Theory Related Fields, 91, 3-4, 307-330 (1992) · Zbl 0739.60071 · doi:10.1007/BF01192060
[5] Barlow, Martin T.; Bass, Richard F., Brownian motion and harmonic analysis on Sierpinski carpets, Canad. J. Math., 51, 4, 673-744 (1999) · Zbl 0945.60071 · doi:10.4153/CJM-1999-031-4
[6] Barlow, Martin T.; Bass, Richard F.; Chen, Zhen-Qing; Kassmann, Moritz, Non-local Dirichlet forms and symmetric jump processes, Trans. Amer. Math. Soc., 361, 4, 1963-1999 (2009) · Zbl 1166.60045 · doi:10.1090/S0002-9947-08-04544-3
[7] Barlow, Martin T.; Bass, Richard F.; Kumagai, Takashi, Stability of parabolic Harnack inequalities on metric measure spaces, J. Math. Soc. Japan, 58, 2, 485-519 (2006) · Zbl 1102.60064
[8] Barlow, Martin T.; Bass, Richard F.; Kumagai, Takashi; Teplyaev, Alexander, Uniqueness of Brownian motion on Sierpi\'nski carpets, J. Eur. Math. Soc. (JEMS), 12, 3, 655-701 (2010) · Zbl 1200.60070
[9] BBKT:supplement N. T. Barlow, R. F. Bass, T. Kumagai, and A. Teplyaev, Supplementary notes for “Uniqueness of Brownian motion on Sierpinski carpets” (2008, unpublished).
http://www.kurims.kyoto-u.ac.jp/\symbol”7Ekumagai/supplscu.pdf. Accessed July 3, 2015 · Zbl 1200.60070
[10] Barlow, Martin T.; Grigor’yan, Alexander; Kumagai, Takashi, On the equivalence of parabolic Harnack inequalities and heat kernel estimates, J. Math. Soc. Japan, 64, 4, 1091-1146 (2012) · Zbl 1281.58016 · doi:10.2969/jmsj/06441091
[11] Barlow, Martin T.; Perkins, Edwin A., Brownian motion on the Sierpi\'nski gasket, Probab. Theory Related Fields, 79, 4, 543-623 (1988) · Zbl 0635.60090 · doi:10.1007/BF00318785
[12] Blumenthal, R. M.; Getoor, R. K., Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, x+313 pp. (1968), Academic Press, New York-London · Zbl 1230.60002
[13] Chen, Zhen-Qing; Fukushima, Masatoshi, Symmetric Markov processes, time change, and boundary theory, London Mathematical Society Monographs Series 35, xvi+479 pp. (2012), Princeton University Press, Princeton, NJ · Zbl 1253.60002
[14] Davies, E. B., Explicit constants for Gaussian upper bounds on heat kernels, Amer. J. Math., 109, 2, 319-333 (1987) · Zbl 0659.35009 · doi:10.2307/2374577
[15] Davies, E. B., Heat kernels and spectral theory, Cambridge Tracts in Mathematics 92, x+197 pp. (1989), Cambridge University Press, Cambridge · Zbl 0699.35006 · doi:10.1017/CBO9780511566158
[16] Dellacherie, Claude; Meyer, Paul-Andr{\'e}, Probabilities and potential, North-Holland Mathematics Studies 29, viii+189 pp. (1978), North-Holland Publishing Co., Amsterdam-New York; North-Holland Publishing Co., Amsterdam-New York · Zbl 0494.60001
[17] Dudley, R. M., Real analysis and probability, Cambridge Studies in Advanced Mathematics 74, x+555 pp. (2002), Cambridge University Press, Cambridge · Zbl 1023.60001 · doi:10.1017/CBO9780511755347
[18] Fitzsimmons, Pat J.; Hambly, Ben M.; Kumagai, Takashi, Transition density estimates for Brownian motion on affine nested fractals, Comm. Math. Phys., 165, 3, 595-620 (1994) · Zbl 0853.60062
[19] Fukushima, Masatoshi; Oshima, Yoichi; Takeda, Masayoshi, Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics 19, x+489 pp. (2011), Walter de Gruyter & Co., Berlin · Zbl 1227.31001
[20] Grigor{\cprime }yan, A. A., The heat equation on noncompact Riemannian manifolds, Mat. Sb.. Math. USSR-Sb., 182 72, 1, 47-77 (1992) · Zbl 0776.58035
[21] Grigor{\cprime }yan, Alexander, Heat kernel upper bounds on a complete non-compact manifold, Rev. Mat. Iberoamericana, 10, 2, 395-452 (1994) · Zbl 0810.58040 · doi:10.4171/RMI/157
[22] Gri:HKfractal A. Grigor’yan, Heat kernel upper bounds on fractal spaces (2004, preprint).
http://www.math.uni-bielefeld.de/\symbol”7Egrigor/fkreps.pdf. Accessed July 3, 2015
[23] Grigor’yan, Alexander, Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics 47, xviii+482 pp. (2009), American Mathematical Society, Providence, RI; International Press, Boston, MA · Zbl 1206.58008
[24] Grigor’yan, Alexander; Hu, Jiaxin, Heat kernels and Green functions on metric measure spaces, Canad. J. Math., 66, 3, 641-699 (2014) · Zbl 1293.35128 · doi:10.4153/CJM-2012-061-5
[25] Grigor’yan, Alexander; Hu, Jiaxin, Upper bounds of heat kernels on doubling spaces, Mosc. Math. J., 14, 3, 505-563, 641-642 (2014) · Zbl 1524.47050
[26] Grigor’yan, Alexander; Hu, Jiaxin; Lau, Ka-Sing, Comparison inequalities for heat semigroups and heat kernels on metric measure spaces, J. Funct. Anal., 259, 10, 2613-2641 (2010) · Zbl 1207.58021 · doi:10.1016/j.jfa.2010.07.010
[27] Grigor’yan, Alexander; Hu, Jiaxin; Lau, Ka-Sing, Generalized capacity, Harnack inequality and heat kernels of Dirichlet forms on metric measure spaces, J. Math. Soc. Japan, 67, 4, 1485-1549 (2015) · Zbl 1331.35152 · doi:10.2969/jmsj/06741485
[28] Grigor’yan, Alexander; Telcs, Andras, Two-sided estimates of heat kernels on metric measure spaces, Ann. Probab., 40, 3, 1212-1284 (2012) · Zbl 1252.35148 · doi:10.1214/11-AOP645
[29] Kajino, Naotaka, Analysis and geometry of the measurable Riemannian structure on the Sierpi\'nski gasket. Fractal geometry and dynamical systems in pure and applied mathematics. I. Fractals in pure mathematics, Contemp. Math. 600, 91-133 (2013), Amer. Math. Soc., Providence, RI · Zbl 1325.28001 · doi:10.1090/conm/600/11932
[30] Karatzas, Ioannis; Shreve, Steven E., Brownian motion and stochastic calculus, Graduate Texts in Mathematics 113, xxiv+470 pp. (1991), Springer-Verlag, New York · Zbl 0734.60060 · doi:10.1007/978-1-4612-0949-2
[31] Kigami, Jun, Local Nash inequality and inhomogeneity of heat kernels, Proc. London Math. Soc. (3), 89, 2, 525-544 (2004) · Zbl 1060.60076 · doi:10.1112/S0024611504014807
[32] Kigami, Jun, Resistance forms, quasisymmetric maps and heat kernel estimates, Mem. Amer. Math. Soc., 216, 1015, vi+132 pp. (2012) · Zbl 1246.60099 · doi:10.1090/S0065-9266-2011-00632-5
[33] Kumagai, Takashi, Estimates of transition densities for Brownian motion on nested fractals, Probab. Theory Related Fields, 96, 2, 205-224 (1993) · Zbl 0792.60073 · doi:10.1007/BF01192133
[34] Kumagai, Takashi, Heat kernel estimates and parabolic Harnack inequalities on graphs and resistance forms, Publ. Res. Inst. Math. Sci., 40, 3, 793-818 (2004) · Zbl 1067.60070
[35] Li, Peter; Yau, Shing-Tung, On the parabolic kernel of the Schr\"odinger operator, Acta Math., 156, 3-4, 153-201 (1986) · Zbl 0611.58045 · doi:10.1007/BF02399203
[36] MRVZ P. Maillard, R. Rhodes, V. Vargas, and O. Zeitouni, Liouville heat kernel: regularity and bounds, Ann.Inst.Henri Poincar\'e Probab.Stat.(2015, in press). · Zbl 1359.35088
[37] Moser, J{\"u}rgen, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., 17, 101-134 (1964) · Zbl 0149.06902
[38] Moser, J., On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math., 24, 727-740 (1971) · Zbl 0227.35016
[39] Saloff-Coste, L., A note on Poincar\'e, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices, 2, 27-38 (1992) · Zbl 0769.58054 · doi:10.1155/S1073792892000047
[40] Saloff-Coste, Laurent, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom., 36, 2, 417-450 (1992) · Zbl 0735.58032
[41] Saloff-Coste, Laurent, Aspects of Sobolev-type inequalities, London Mathematical Society Lecture Note Series 289, x+190 pp. (2002), Cambridge University Press, Cambridge · Zbl 0991.35002
[42] Sturm, Karl-Theodor, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., 32, 2, 275-312 (1995) · Zbl 0854.35015
[43] Sturm, K. T., Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9), 75, 3, 273-297 (1996) · Zbl 0854.35016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.