×

Uniform regularity results for critical and subcritical surface energies. (English) Zbl 1445.58007

Authors’ abstract: We establish regularity results for critical points to energies of immersed surfaces depending on the first and the second fundamental form exclusively. These results hold for a large class of intrinsic elliptic Lagrangians which are sub-critical or critical. They are derived using uniform \(\epsilon\)-regularity estimates which do not degenerate as the Lagrangians approach the critical regime given by the Willmore integrand.

MSC:

58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
53A05 Surfaces in Euclidean and related spaces
35J35 Variational methods for higher-order elliptic equations
35J48 Higher-order elliptic systems
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)

References:

[1] Adams, R., A note on Riesz potentials, Duke Math. J., 42, 765-778, (1975) · Zbl 0336.46038 · doi:10.1215/S0012-7094-75-04265-9
[2] Bernard, Y.; Rivière, T., Energy quantization for Willmore surfaces and applications, Ann. Math., 180, 87-136, (2014) · Zbl 1325.53014 · doi:10.4007/annals.2014.180.1.2
[3] Bernard, Y.; Rivière, T., Singularity removability at branch points for Willmore surfaces, Pac. J. Math., 265, 257-311, (2013) · Zbl 1304.30032 · doi:10.2140/pjm.2013.265.257
[4] Breuning, P., Immersions with bounded second fundamental form, J. Geom. Anal., 25, 1344-1386, (2015) · Zbl 1318.53060 · doi:10.1007/s12220-014-9472-7
[5] Coifman, R.; Lions, P-L; Meyer, Y.; Semmes, S., Compensated compactness and Hardy spaces, J. Math. Pures Appl. (9), 72, 247-286, (1993) · Zbl 0864.42009
[6] Ge, Y., A remark on generalized harmonic maps into the sphere, Nonlinear Anal. T.M.A., 36, 495-506, (1999) · Zbl 0932.35071 · doi:10.1016/S0362-546X(98)00079-0
[7] Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies 105, Princeton University Press, Princeton (1983) · Zbl 0516.49003
[8] Hélein, F.: Harmonic Maps, Conservation Laws, and Moving Frames. Cambridge Tracts in Mathematics 150, Cambridge University Press, Cambridge (2002)
[9] Hutchinson, JE, Second fundamental form for varifolds and the existence of surfaces minimizing curvature, Indiana Math. J., 35, 45-71, (1986) · Zbl 0561.53008 · doi:10.1512/iumj.1986.35.35003
[10] Iwaniecz, T.; Sbordone, C., Weak minima of variational integrals, J. Reine Angew. Math., 434, 143-161, (1994) · Zbl 0802.35016
[11] Kuwert, E.; Lamm, T.; Li, Y., Two-dimensional curvature functionals with superquadratic growth, J. Eur. Math. Soc., 17, 3081-3111, (2015) · Zbl 1332.53011 · doi:10.4171/JEMS/580
[12] Langer, J., A compactness theorem for surfaces with \(L^p\)-bounded second fundamental form, Math. Ann., 270, 223-234, (1985) · Zbl 0564.58010 · doi:10.1007/BF01456183
[13] Laurain, P., Rivière, T.: Optimal estimate for the gradient of Green’s functions on degenerating surfaces and applications. to appear in Commun. Anal. Geom
[14] Mondino, A.: Existence of integral \(m\)-varifolds minimizing \(∫ |A|^p\) and \(∫ H^p\) in Riemannian manifolds. Calc. Var. PDE 29, 431-470 (2014) · Zbl 1282.49041
[15] Mondino, A.; Rivière, T., Willmore spheres in compact Riemannian manifolds, Adv. Math., 232, 608-676, (2013) · Zbl 1294.30046 · doi:10.1016/j.aim.2012.09.014
[16] Rivière, T.: Weak immersions of surfaces with \(L^2\)-bounded second fundamental form. Geometric analysis, 303-384, IAS/Park City Math. Ser., 22, American Mathematical Society, Providence, RI (2016) · Zbl 1359.53002
[17] Rivière, T., Analysis aspects of the Willmore functional, Invent. Math., 174, 1-45, (2008) · Zbl 1155.53031 · doi:10.1007/s00222-008-0129-7
[18] Rivière, T., Variational principles for immersed surfaces with \(L^2\)-bounded second fundamental form, J. Reine Angew. Math., 695, 41-98, (2014) · Zbl 1304.49095
[19] Rivière, T.: Willmore minmax surfaces and the cost of the sphere eversion. arXiv:1512.08918
[20] Rochberg, R.; Weiss, G., Derivatives of analytic families of Banach spaces, Ann. Math. (2), 118, 315-347, (1983) · Zbl 0539.46049 · doi:10.2307/2007031
[21] Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Lectures Notes of the Unione Matematica Italiana 3 (2007), Springer. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1(3), 479-500 (1998) · Zbl 0929.46028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.