×

Operator product expansion for conformal defects. (English) Zbl 1384.81100

Summary: We study the operator product expansion (OPE) for scalar conformal defects of any codimension in CFT. The OPE for defects is decomposed into “defect OPE blocks”, the irreducible representations of the conformal group, each of which packages the contribution from a primary operator and its descendants. We use the shadow formalism to deduce an integral representation of the defect OPE blocks. They are shown to obey a set of constraint equations that can be regarded as equations of motion for a scalar field propagating on the moduli space of the defects. By employing the Radon transform between the AdS space and the moduli space, we obtain a formula of constructing an AdS scalar field from the defect OPE block for a conformal defect of any codimension in a scalar representation of the conformal group, which turns out to be the Euclidean version of the HKLL formula. We also introduce a duality between conformal defects of different codimensions and prove the equivalence between the defect OPE block for codimension-two defects and the OPE block for a pair of local operators.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] S. Gukov, Surface operators, in New dualities of supersymmetric gauge theories, J. Teschner ed., Springer, Germany (2016).
[2] J.L. Cardy, Conformal invariance and surface critical behavior, Nucl. Phys.B 240 (1984) 514 [INSPIRE].
[3] D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general dimensions, Nucl. Phys.B 455 (1995) 522 [cond-mat/9505127] [INSPIRE]. · Zbl 0925.81295
[4] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.0406 (2004) P06002 [hep-th/0405152] [INSPIRE]. · Zbl 1082.82002
[5] J. Cardy, Some results on the mutual information of disjoint regions in higher dimensions, J. Phys.A 46 (2013) 285402 [arXiv:1304.7985] [INSPIRE]. · Zbl 1273.81192
[6] L.-Y. Hung, R.C. Myers and M. Smolkin, Twist operators in higher dimensions, JHEP10 (2014) 178 [arXiv:1407.6429] [INSPIRE]. · Zbl 1333.81295 · doi:10.1007/JHEP10(2014)178
[7] L. Bianchi, M. Meineri, R.C. Myers and M. Smolkin, Rényi entropy and conformal defects, JHEP07 (2016) 076 [arXiv:1511.06713] [INSPIRE]. · Zbl 1390.81486 · doi:10.1007/JHEP07(2016)076
[8] P. Liendo, L. Rastelli and B.C. van Rees, The bootstrap program for boundary CFTd, JHEP07 (2013) 113 [arXiv:1210.4258] [INSPIRE]. · Zbl 1342.81504 · doi:10.1007/JHEP07(2013)113
[9] D. Gaiotto, D. Mazac and M.F. Paulos, Bootstrapping the 3d Ising twist defect, JHEP03 (2014) 100 [arXiv:1310.5078] [INSPIRE]. · doi:10.1007/JHEP03(2014)100
[10] F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and interface CFTs from the conformal bootstrap, JHEP05 (2015) 036 [arXiv:1502.07217] [INSPIRE]. · Zbl 1388.81150 · doi:10.1007/JHEP05(2015)036
[11] M. Billó, V. Gonçalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP04 (2016) 091 [arXiv:1601.02883] [INSPIRE]. · Zbl 1388.81029
[12] A. Gadde, Conformal constraints on defects, arXiv:1602.06354 [INSPIRE]. · Zbl 1434.81101
[13] P.A.M. Dirac, Wave equations in conformal space, Ann. Math.37 (1936) 429. · Zbl 0014.08004 · doi:10.2307/1968455
[14] G. Mack and A. Salam, Finite component field representations of the conformal group, Annals Phys.53 (1969) 174 [INSPIRE]. · doi:10.1016/0003-4916(69)90278-4
[15] S. Weinberg, Six-dimensional methods for four-dimensional conformal field theories, Phys. Rev.D 82 (2010) 045031 [arXiv:1006.3480] [INSPIRE].
[16] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP11 (2011) 071 [arXiv:1107.3554] [INSPIRE]. · Zbl 1306.81207 · doi:10.1007/JHEP11(2011)071
[17] D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The Operator product expansion for Wilson loops and surfaces in the large-N limit, Phys. Rev.D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].
[18] R. Corrado, B. Florea and R. McNees, Correlation functions of operators and Wilson surfaces in the D = 6, (0, 2) theory in the large-N limit, Phys. Rev.D 60 (1999) 085011 [hep-th/9902153] [INSPIRE].
[19] B. Chen, C.-Y. Liu and J.-B. Wu, Operator product expansion of Wilson surfaces from M 5-branes, JHEP01 (2008) 007 [arXiv:0711.2194] [INSPIRE].
[20] J. Gomis and T. Okuda, S-duality, ’t Hooft operators and the operator product expansion, JHEP09 (2009) 072 [arXiv:0906.3011] [INSPIRE]. · doi:10.1088/1126-6708/2009/09/072
[21] S. Ferrara, A.F. Grillo and G. Parisi, Nonequivalence between conformal covariant Wilson expansion in euclidean and Minkowski space, Lett. Nuovo Cim.5S2 (1972) 147 [INSPIRE].
[22] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, Covariant expansion of the conformal four-point function, Nucl. Phys.B 49 (1972) 77 [Erratum ibid.B 53 (1973) 643] [INSPIRE].
[23] S. Ferrara and G. Parisi, Conformal covariant correlation functions, Nucl. Phys.B 42 (1972) 281 [INSPIRE]. · doi:10.1016/0550-3213(72)90480-4
[24] S. Ferrara, A.F. Grillo, G. Parisi and R. Gatto, The shadow operator formalism for conformal algebra. Vacuum expectation values and operator products, Lett. Nuovo Cim.4S2 (1972) 115 [INSPIRE].
[25] G. Mack, Duality in quantum field theory, Nucl. Phys.B 118 (1977) 445 [INSPIRE].
[26] G. Mack, Convergence of operator product expansions on the vacuum in conformal invariant quantum field theory, Commun. Math. Phys.53 (1977) 155 [INSPIRE]. · doi:10.1007/BF01609130
[27] D. Simmons-Duffin, Projectors, shadows and conformal blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE]. · Zbl 1333.83125 · doi:10.1007/JHEP04(2014)146
[28] J. Lin, M. Marcolli, H. Ooguri and B. Stoica, Locality of gravitational systems from entanglement of conformal field theories, Phys. Rev. Lett.114 (2015) 221601 [arXiv:1412.1879] [INSPIRE]. · doi:10.1103/PhysRevLett.114.221601
[29] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a holographic description of the black hole interior, Phys. Rev.D 75 (2007) 106001 [Erratum ibid.D 75 (2007) 129902] [hep-th/0612053] [INSPIRE]. · Zbl 1165.81352
[30] B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, A stereoscopic look into the bulk, JHEP07 (2016) 129 [arXiv:1604.03110] [INSPIRE]. · Zbl 1390.83101 · doi:10.1007/JHEP07(2016)129
[31] J. de Boer, F.M. Haehl, M.P. Heller and R.C. Myers, Entanglement, holography and causal diamonds, JHEP08 (2016) 162 [arXiv:1606.03307] [INSPIRE]. · Zbl 1390.83135 · doi:10.1007/JHEP08(2016)162
[32] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[33] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE]. · Zbl 1228.83110 · doi:10.1088/1126-6708/2006/08/045
[34] A. Karch, J. Sully, C.F. Uhlemann and D.G.E. Walker, Boundary kinematic space, JHEP08 (2017) 039 [arXiv:1703.02990] [INSPIRE]. · Zbl 1381.81116 · doi:10.1007/JHEP08(2017)039
[35] C.P. Herzog and K.-W. Huang, Boundary conformal field theory and a boundary central charge, JHEP10 (2017) 189 [arXiv:1707.06224] [INSPIRE]. · Zbl 1383.81229 · doi:10.1007/JHEP10(2017)189
[36] A. Karch and Y. Sato, Boundary holographic Witten diagrams, JHEP09 (2017) 121 [arXiv:1708.01328] [INSPIRE]. · Zbl 1382.81184 · doi:10.1007/JHEP09(2017)121
[37] C.P. Herzog, K.-W. Huang and K. Jensen, Universal entanglement and boundary geometry in conformal field theory, JHEP01 (2016) 162 [arXiv:1510.00021] [INSPIRE]. · Zbl 1388.81082 · doi:10.1007/JHEP01(2016)162
[38] D. Fursaev, Conformal anomalies of CFT’s with boundaries, JHEP12 (2015) 112 [arXiv:1510.01427] [INSPIRE]. · Zbl 1388.81977
[39] S.N. Solodukhin, Boundary terms of conformal anomaly, Phys. Lett.B 752 (2016) 131 [arXiv:1510.04566] [INSPIRE].
[40] K. Jensen and A. O’Bannon, Constraint on defect and boundary renormalization group flows, Phys. Rev. Lett.116 (2016) 091601 [arXiv:1509.02160] [INSPIRE]. · doi:10.1103/PhysRevLett.116.091601
[41] C. Herzog, K.-W. Huang and K. Jensen, Displacement operators and constraints on boundary central charges, arXiv:1709.07431 [INSPIRE].
[42] C.R. Graham and E. Witten, Conformal anomaly of submanifold observables in AdS/CFT correspondence, Nucl. Phys.B 546 (1999) 52 [hep-th/9901021] [INSPIRE]. · Zbl 0944.81046
[43] S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett.B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE]. · Zbl 1328.81209 · doi:10.1016/j.physletb.2008.05.071
[44] D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional geometry of squashed cones, Phys. Rev.D 88 (2013) 044054 [arXiv:1306.4000] [INSPIRE].
[45] D.V. Fursaev and S.N. Solodukhin, Anomalies, entropy and boundaries, Phys. Rev.D 93 (2016) 084021 [arXiv:1601.06418] [INSPIRE].
[46] S. Ferrara, R. Gatto and A.F. Grillo, Conformal algebra in space-time and operator product expansion, Springer Tracts Mod. Phys.67 (1973) 1. · doi:10.1007/BFb0111104
[47] M.S. Costa and T. Hansen, Conformal correlators of mixed-symmetry tensors, JHEP02 (2015) 151 [arXiv:1411.7351] [INSPIRE]. · Zbl 1388.53102 · doi:10.1007/JHEP02(2015)151
[48] M.S. Costa, T. Hansen, J. Penedones and E. Trevisani, Projectors and seed conformal blocks for traceless mixed-symmetry tensors, JHEP07 (2016) 018 [arXiv:1603.05551] [INSPIRE]. · Zbl 1388.81798 · doi:10.1007/JHEP07(2016)018
[49] V.K. Dobrev, V.B. Petkova, S.G. Petrova and I.T. Todorov, Dynamical derivation of vacuum operator product expansion in euclidean conformal quantum field theory, Phys. Rev.D 13 (1976) 887 [INSPIRE].
[50] F. Rejon-Barrera and D. Robbins, Scalar-vector bootstrap, JHEP01 (2016) 139 [arXiv:1508.02676] [INSPIRE]. · Zbl 1388.81693 · doi:10.1007/JHEP01(2016)139
[51] E.S. Fradkin and M.Y. Palchik, Conformal quantum field theory in D-dimensions, Springer, Germany (1996). · Zbl 0896.70001
[52] F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE]. · Zbl 1097.81735
[53] C. Sleight and M. Taronna, Spinning Witten diagrams, JHEP06 (2017) 100 [arXiv:1702.08619] [INSPIRE]. · Zbl 1380.81362 · doi:10.1007/JHEP06(2017)100
[54] K. Pilch and A.N. Schellekens, Formulae for the eigenvalues of the laplacian on tensor harmonics on symmetric coset spaces, J. Math. Phys.25 (1984) 3455 [INSPIRE]. · Zbl 0557.35087 · doi:10.1063/1.526101
[55] R. Camporesi, Harmonic analysis and propagators on homogeneous spaces, Phys. Rept.196 (1990) 1 [INSPIRE]. · doi:10.1016/0370-1573(90)90120-Q
[56] S. Helgason, Integral geometry and Radon transforms, Springer, Germany (2010). · Zbl 1210.53002
[57] S. Ishikawa, The range characterizations of the totally geodesic Radon transform on the real hyperbolic space, Duke Math. J.90 (1997) 149. · Zbl 0907.53047 · doi:10.1215/S0012-7094-97-09006-2
[58] S. Helgason, The totally-geodesic radon transform on constant curvature spaces, Contemp. Math.113 (1990) 141. · Zbl 0794.44001 · doi:10.1090/conm/113/1108651
[59] X. Xiao, Holographic representation of local operators in de Sitter space, Phys. Rev.D 90 (2014) 024061 [arXiv:1402.7080] [INSPIRE].
[60] T.P. Branson, G. Ólafsson and H. Schlichtkrull, A bundle valued radon transform, with applications to invariant wave equations, Quart. J. Math.45 (1994) 4. · Zbl 0924.43010 · doi:10.1093/qmath/45.4.429
[61] B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, Equivalent equations of motion for gravity and entropy, JHEP02 (2017) 004 [arXiv:1608.06282] [INSPIRE]. · Zbl 1377.83009 · doi:10.1007/JHEP02(2017)004
[62] M. Boucetta, The Lichnerowicz laplacian on compact symmetric spaces, Compt. Rend. Math.347 (2009) 1061. · Zbl 1203.58011 · doi:10.1016/j.crma.2009.06.019
[63] J. Long, On co-dimension two defect operators, arXiv:1611.02485 [INSPIRE].
[64] L. Susskind, Computational complexity and black hole horizons, Fortsch. Phys.64 (2016) 44 [arXiv:1403.5695] [INSPIRE]. · Zbl 1429.81020 · doi:10.1002/prop.201500093
[65] M. Miyaji et al., Distance between quantum states and gauge-gravity duality, Phys. Rev. Lett.115 (2015) 261602 [arXiv:1507.07555] [INSPIRE]. · doi:10.1103/PhysRevLett.115.261602
[66] J. Kaplan, Lectures on AdS/CFT from the bottom up, course notes (2015).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.