×

Scalar-vector bootstrap. (English) Zbl 1388.81693

Summary: We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP12 (2008) 031 [arXiv:0807.0004] [INSPIRE]. · Zbl 1329.81324 · doi:10.1088/1126-6708/2008/12/031
[2] V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev.D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].
[3] F. Caracciolo and V.S. Rychkov, Rigorous limits on the interaction strength in quantum field theory, Phys. Rev.D 81 (2010) 085037 [arXiv:0912.2726] [INSPIRE].
[4] D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP05 (2011) 017 [arXiv:1009.2087] [INSPIRE]. · Zbl 1296.81067 · doi:10.1007/JHEP05(2011)017
[5] R. Rattazzi, S. Rychkov and A. Vichi, Central charge bounds in 4D conformal field theory, Phys. Rev.D 83 (2011) 046011 [arXiv:1009.2725] [INSPIRE].
[6] R. Rattazzi, S. Rychkov and A. Vichi, Bounds in 4D conformal field theories with global symmetry, J. Phys.A 44 (2011) 035402 [arXiv:1009.5985] [INSPIRE]. · Zbl 1206.81116
[7] S. Rychkov, Conformal bootstrap in three dimensions?, arXiv:1111.2115 [INSPIRE]. · Zbl 1365.81007
[8] D. Poland, D. Simmons-Duffin and A. Vichi, Carving out the space of 4D CFTs, JHEP05 (2012) 110 [arXiv:1109.5176] [INSPIRE]. · doi:10.1007/JHEP05(2012)110
[9] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising model with the conformal bootstrap, Phys. Rev.D 86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].
[10] S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Solving the 3D Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys.157 (2014) 869 [arXiv:1403.4545] [INSPIRE]. · Zbl 1310.82013
[11] S. El-Showk, M. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and A. Vichi, Conformal field theories in fractional dimensions, Phys. Rev. Lett.112 (2014) 141601 [arXiv:1309.5089] [INSPIRE]. · doi:10.1103/PhysRevLett.112.141601
[12] F. Caracciolo, A.C. Echeverri, B. von Harling and M. Serone, Bounds on OPE coefficients in 4D conformal field theories, JHEP10 (2014) 020 [arXiv:1406.7845] [INSPIRE]. · Zbl 1333.81365 · doi:10.1007/JHEP10(2014)020
[13] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping mixed correlators in the 3D Ising model, JHEP11 (2014) 109 [arXiv:1406.4858] [INSPIRE]. · doi:10.1007/JHEP11(2014)109
[14] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and AdS superhorizon locality, JHEP12 (2013) 004 [arXiv:1212.3616] [INSPIRE]. · Zbl 1342.83239 · doi:10.1007/JHEP12(2013)004
[15] Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP11 (2013) 140 [arXiv:1212.4103] [INSPIRE]. · doi:10.1007/JHEP11(2013)140
[16] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics from the CFT bootstrap, JHEP08 (2014) 145 [arXiv:1403.6829] [INSPIRE]. · doi:10.1007/JHEP08(2014)145
[17] A. Kaviraj, K. Sen and A. Sinha, Analytic bootstrap at large spin, JHEP11 (2015) 083 [arXiv:1502.01437] [INSPIRE]. · Zbl 1390.81703 · doi:10.1007/JHEP11(2015)083
[18] L.F. Alday, A. Bissi and T. Lukowski, Large spin systematics in CFT, JHEP11 (2015) 101 [arXiv:1502.07707] [INSPIRE]. · Zbl 1388.81752
[19] A. Kaviraj, K. Sen and A. Sinha, Universal anomalous dimensions at large spin and large twist, JHEP07 (2015) 026 [arXiv:1504.00772] [INSPIRE]. · Zbl 1388.83275 · doi:10.1007/JHEP07(2015)026
[20] A. Vichi, Improved bounds for CFT’s with global symmetries, JHEP01 (2012) 162 [arXiv:1106.4037] [INSPIRE]. · Zbl 1306.81289 · doi:10.1007/JHEP01(2012)162
[21] M. Hogervorst, H. Osborn and S. Rychkov, Diagonal limit for conformal blocks in d dimensions, JHEP08 (2013) 014 [arXiv:1305.1321] [INSPIRE]. · Zbl 1342.81497 · doi:10.1007/JHEP08(2013)014
[22] M. Hogervorst and S. Rychkov, Radial coordinates for conformal blocks, Phys. Rev.D 87 (2013) 106004 [arXiv:1303.1111] [INSPIRE].
[23] F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping the O(N) vector models, JHEP06 (2014) 091 [arXiv:1307.6856] [INSPIRE]. · Zbl 1392.81202 · doi:10.1007/JHEP06(2014)091
[24] J.-B. Bae and S.-J. Rey, Conformal bootstrap approach to O(N ) fixed points in five dimensions, arXiv:1412.6549 [INSPIRE].
[25] Y. Nakayama and T. Ohtsuki, Five dimensional O(N )-symmetric CFTs from conformal bootstrap, Phys. Lett.B 734 (2014) 193 [arXiv:1404.5201] [INSPIRE]. · doi:10.1016/j.physletb.2014.05.058
[26] S.M. Chester, S.S. Pufu and R. Yacoby, Bootstrapping O(N ) vector models in 4 < d < 6, Phys. Rev.D 91 (2015) 086014 [arXiv:1412.7746] [INSPIRE].
[27] F. Kos, D. Poland, D. Simmons-Duffin and A. Vichi, Bootstrapping the O(N) archipelago, JHEP11 (2015) 106 [arXiv:1504.07997] [INSPIRE]. · Zbl 1388.81054 · doi:10.1007/JHEP11(2015)106
[28] C. Beem, L. Rastelli and B.C. van Rees, The N = 4 superconformal bootstrap, Phys. Rev. Lett.111 (2013) 071601 [arXiv:1304.1803] [INSPIRE]. · doi:10.1103/PhysRevLett.111.071601
[29] L.F. Alday and A. Bissi, The superconformal bootstrap for structure constants, JHEP09 (2014) 144 [arXiv:1310.3757] [INSPIRE]. · doi:10.1007/JHEP09(2014)144
[30] D. Bashkirov, Bootstrapping the N = 1 SCFT in three dimensions, arXiv:1310.8255 [INSPIRE].
[31] A.L. Fitzpatrick, J. Kaplan, Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, Covariant approaches to superconformal blocks, JHEP08 (2014) 129 [arXiv:1402.1167] [INSPIRE]. · doi:10.1007/JHEP08(2014)129
[32] Z.U. Khandker, D. Li, D. Poland and D. Simmons-Duffin, N = 1 superconformal blocks for general scalar operators, JHEP08 (2014) 049 [arXiv:1404.5300] [INSPIRE]. · doi:10.1007/JHEP08(2014)049
[33] M. Berkooz, R. Yacoby and A. Zait, Bounds on N = 1 superconformal theories with global symmetries, JHEP08 (2014) 008 [Erratum ibid.01 (2015) 132] [arXiv:1402.6068] [INSPIRE]. · Zbl 1388.81634
[34] L.F. Alday and A. Bissi, Generalized bootstrap equations for N = 4 SCFT, JHEP02 (2015) 101 [arXiv:1404.5864] [INSPIRE]. · Zbl 1388.81098
[35] Y. Nakayama and T. Ohtsuki, Approaching the conformal window of O(n) × O(m) symmetric Landau-Ginzburg models using the conformal bootstrap, Phys. Rev.D 89 (2014) 126009 [arXiv:1404.0489] [INSPIRE].
[36] S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The N = 8 superconformal bootstrap in three dimensions, JHEP09 (2014) 143 [arXiv:1406.4814] [INSPIRE]. · doi:10.1007/JHEP09(2014)143
[37] C. Beem, M. Lemos, P. Liendo, L. Rastelli and B.C. van Rees, The N = 2 superconformal bootstrap, arXiv:1412.7541 [INSPIRE]. · Zbl 1388.81482
[38] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping the three-dimensional supersymmetric Ising model, Phys. Rev. Lett.115 (2015) 051601 [arXiv:1502.04124] [INSPIRE]. · doi:10.1103/PhysRevLett.115.051601
[39] N. Bobev, S. El-Showk, D. Mazac and M.F. Paulos, Bootstrapping SCFTs with four supercharges, JHEP08 (2015) 142 [arXiv:1503.02081] [INSPIRE]. · Zbl 1388.81638
[40] L. Iliesiu, F. Kos, D. Poland, S.S. Pufu, D. Simmons-Duffin and R. Yacoby, Bootstrapping 3D fermions, arXiv:1508.00012 [INSPIRE].
[41] F.A. Dolan and H. Osborn, Conformal four point functions and the operator product expansion, Nucl. Phys.B 599 (2001) 459 [hep-th/0011040] [INSPIRE]. · Zbl 1097.81734 · doi:10.1016/S0550-3213(01)00013-X
[42] F.A. Dolan and H. Osborn, Conformal partial waves and the operator product expansion, Nucl. Phys.B 678 (2004) 491 [hep-th/0309180] [INSPIRE]. · Zbl 1097.81735 · doi:10.1016/j.nuclphysb.2003.11.016
[43] F.A. Dolan and H. Osborn, Conformal partial waves: further mathematical results, arXiv:1108.6194 [INSPIRE]. · Zbl 1097.81735
[44] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal blocks, JHEP11 (2011) 154 [arXiv:1109.6321] [INSPIRE]. · Zbl 1306.81148 · doi:10.1007/JHEP11(2011)154
[45] D. Simmons-Duffin, Projectors, shadows and conformal blocks, JHEP04 (2014) 146 [arXiv:1204.3894] [INSPIRE]. · Zbl 1333.83125 · doi:10.1007/JHEP04(2014)146
[46] M.S. Costa and T. Hansen, Conformal correlators of mixed-symmetry tensors, JHEP02 (2015) 151 [arXiv:1411.7351] [INSPIRE]. · Zbl 1388.53102 · doi:10.1007/JHEP02(2015)151
[47] A.C. Echeverri, E. Elkhidir, D. Karateev and M. Serone, Deconstructing conformal blocks in 4D CFT, JHEP08 (2015) 101 [arXiv:1505.03750] [INSPIRE]. · Zbl 1388.81409 · doi:10.1007/JHEP08(2015)101
[48] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP11 (2011) 071 [arXiv:1107.3554] [INSPIRE]. · Zbl 1306.81207 · doi:10.1007/JHEP11(2011)071
[49] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten diagrams revisited: the AdS geometry of conformal blocks, arXiv:1508.00501 [INSPIRE]. · Zbl 1388.81047
[50] A. Dymarsky, On the four-point function of the stress-energy tensors in a CFT, JHEP10 (2015) 075 [arXiv:1311.4546] [INSPIRE]. · Zbl 1388.81408 · doi:10.1007/JHEP10(2015)075
[51] B. Geyer, M. Lazar and D. Robaschik, Decomposition of nonlocal light cone operators into harmonic operators of definite twist, Nucl. Phys.B 559 (1999) 339 [hep-th/9901090] [INSPIRE]. · Zbl 0957.81091 · doi:10.1016/S0550-3213(99)00334-X
[52] B. Geyer and M. Lazar, Twist decomposition of nonlocal light cone operators. 2. General tensors of 2ndrank, Nucl. Phys.B 581 (2000) 341 [hep-th/0003080] [INSPIRE]. · Zbl 0984.81178 · doi:10.1016/S0550-3213(00)00227-3
[53] J. Eilers, Geometric twist decomposition off the light-cone for nonlocal QCD operators, hep-th/0608173 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.