×

Persistence property in a two-species chemotaxis system with two signals. (English) Zbl 1383.92021

Summary: This paper deals with a two-species chemotaxis system with two different signals under homogeneous Neumann boundary conditions in a bounded convex domain with the non-negative initial data. This system is a generalization of the classical Keller-Segel chemotaxis models to the case of two species which are attracted by two different chemical signals. Under suitable conditions, it is proved that for any non-negative global classical solutions, the masses of two species do not extinct at any time.{
©2017 American Institute of Physics}

MSC:

92C17 Cell movement (chemotaxis, etc.)
35G50 Systems of nonlinear higher-order PDEs
35G61 Initial-boundary value problems for systems of nonlinear higher-order PDEs
Full Text: DOI

References:

[1] Baghaei, K.; Hesaaraki, M., Global existence and boundedness of classical solutions for a chemotaxis model with logistic source, C. R. Acad. Sci. Paris, Ser. I, 351, 585-591 (2013) · Zbl 1278.35248 · doi:10.1016/j.crma.2013.07.027
[2] Bai, X.; Winkler, M., Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65, 553-583 (2016) · Zbl 1345.35117 · doi:10.1512/iumj.2016.65.5776
[3] Black, T., Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals, Discrete Contin. Dyn. Syst. - Ser. B, 22, 1253-1272 (2017) · Zbl 1360.35084 · doi:10.3934/dcdsb.2017061
[4] Biler, P.; Espejo, E.; Guerra, I., Blowup in higher dimensional two species chemotactic systems, Commun. Pure Appl. Anal., 12, 89-98 (2013) · Zbl 1278.35250 · doi:10.3934/cpaa.2013.12.89
[5] Cieślak, T.; Winkler, M., Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21, 1057-1076 (2008) · Zbl 1136.92006 · doi:10.1088/0951-7715/21/5/009
[6] Conca, C.; Espejo, E.; Vilches, K., Remarks on the blowup and global existence for a two species chemotactic Keller-Segel system in \(R^2\), Eur. J. Appl. Math., 22, 553-580 (2011) · Zbl 1241.35025 · doi:10.1017/s0956792511000258
[7] Espejo, E.; Stevens, A.; Velázquez, J. J. L., Simultaneous finite time blow-up in a two-species model for chemotaxis, Analysis, 29, 317-338 (2009) · Zbl 1186.35098 · doi:10.1524/anly.2009.1029
[8] Espejo, E.; Suzuki, T., Global existence and blow-up for a system describing the aggregation of microglia, Appl. Math. Lett., 35, 29-34 (2014) · Zbl 1375.35243 · doi:10.1016/j.aml.2014.04.007
[9] Horstmann, D., Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species, J. Nonlinear Sci., 21, 231-270 (2011) · Zbl 1262.35203 · doi:10.1007/s00332-010-9082-x
[10] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equations, 215, 52-107 (2005) · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[11] Jin, H. Y., Boundedness of the attraction-repulsion Keller-Segel system, J. Math. Anal. Appl., 422, 1463-1478 (2015) · Zbl 1307.35139 · doi:10.1016/j.jmaa.2014.09.049
[12] Keller, E. F.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26, 399-415 (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[13] Lankeit, J., Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. - Ser. B, 20, 1499-1527 (2015) · Zbl 1337.35160 · doi:10.3934/dcdsb.2015.20.1499
[14] Lankeit, J., Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differ. Equations, 258, 1158-1191 (2015) · Zbl 1319.35085 · doi:10.1016/j.jde.2014.10.016
[15] Li, Y.; Li, Y., Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species, Nonlinear Anal., 109, 72-84 (2014) · Zbl 1297.35053 · doi:10.1016/j.na.2014.05.021
[16] Liu, J.; Wang, Z. A., Classical solutions and steady states of an attraction-repulsion chemotaxis in one dimension, J. Biol. Dyn., 6, 31-41 (2012) · Zbl 1452.92010 · doi:10.1080/17513758.2011.571722
[17] Lin, K.; Mu, C.; Wang, L., Large time behavior for an attraction-repulsion chemotaxis system, J. Math. Anal. Appl., 426, 105-124 (2015) · Zbl 1310.35039 · doi:10.1016/j.jmaa.2014.12.052
[18] Lin, K.; Mu, C.; Wang, L., Boundedness in a two-species chemotaxis system, Math. Methods Appl. Sci., 38, 5085-5096 (2015) · Zbl 1334.92059 · doi:10.1002/mma.3429
[19] Liu, P.; Shi, J.; Wang, Z. A., Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst. - Ser. B, 18, 2597-2625 (2013) · Zbl 1277.35048 · doi:10.3934/dcdsb.2013.18.2597
[20] Mu, C.; Wang, L.; Zheng, P.; Zhang, Q., Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system, Nonlinear Anal.: Real World Appl., 14, 1634-1642 (2013) · Zbl 1261.35072 · doi:10.1016/j.nonrwa.2012.10.022
[21] Nagai, T., Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequalities Appl., 2001, 970292 · Zbl 0990.35024 · doi:10.1155/s1025583401000042
[22] Osaki, K.; Tsujikawa, T.; Yagi, A.; Mimura, M., Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51, 119-144 (2002) · Zbl 1005.35023 · doi:10.1016/s0362-546x(01)00815-x
[23] Stinner, C.; Surulescu, C.; Winkler, M., Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46, 1969-2007 (2014) · Zbl 1301.35189 · doi:10.1137/13094058x
[24] Stinner, C.; Tello, J. I.; Winkler, M., Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68, 1607-1626 (2014) · Zbl 1319.92050 · doi:10.1007/s00285-013-0681-7
[25] Tao, Y.; Wang, Z. A., Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23, 1-36 (2013) · Zbl 1403.35136 · doi:10.1142/s0218202512500443
[26] Tao, Y.; Winkler, M., Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. - Ser. B, 20, 3165-3183 (2015) · Zbl 1329.35075 · doi:10.3934/dcdsb.2015.20.3165
[27] Tao, Y.; Winkler, M., Persistence of mass in a chemotaxis system with logistic source, J. Differ. Equations, 259, 6142-6161 (2015) · Zbl 1321.35084 · doi:10.1016/j.jde.2015.07.019
[28] Tello, J. I.; Winkler, M., Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25, 1413-1425 (2012) · Zbl 1260.92014 · doi:10.1088/0951-7715/25/5/1413
[29] Tello, J. I.; Winkler, M., A chemotaxis system with logistic source, Commun. Partial Differ. Equations, 32, 6, 849-877 (2007) · Zbl 1121.37068 · doi:10.1080/03605300701319003
[30] Viglialoro, G., Very weak global solutions to a parabolic-parabolic chemotaxis-system with logistic source, J. Math. Anal. Appl., 439, 197-212 (2016) · Zbl 1386.35163 · doi:10.1016/j.jmaa.2016.02.069
[31] Viglialoro, G., Boundedness properties of very weak solutions to a fully parabolic chemotaxis-system with logistic source, Nonlinear Anal.: Real World Appl., 34, 520-535 (2017) · Zbl 1355.35094 · doi:10.1016/j.nonrwa.2016.10.001
[32] Viglialoro, G.; Woolley, T., Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth, Discrete Contin. Dyn. Syst. - Ser. B, 22, 47 (2017) · Zbl 1409.35046 · doi:10.3934/dcdsb.2017199
[33] Wang, L.; Mu, C.; Zheng, P., On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differ. Equations, 256, 1847-1872 (2014) · Zbl 1301.35060 · doi:10.1016/j.jde.2013.12.007
[34] Wang, Q.; Zhang, L.; Yang, J.; Hu, J., Global existence and steady states of a two competing species Keller-Segel chemotaxis model, Kinet. Relat. Models, 8, 777-807 (2015) · Zbl 1320.92035 · doi:10.3934/krm.2015.8.777
[35] Winkler, M., Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100, 748-767 (2013) · Zbl 1326.35053 · doi:10.1016/j.matpur.2013.01.020
[36] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equations, 35, 1516-1537 (2010) · Zbl 1290.35139 · doi:10.1080/03605300903473426
[37] Winkler, M., Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differ. Equations, 257, 1056-1077 (2014) · Zbl 1293.35048 · doi:10.1016/j.jde.2014.04.023
[38] Winkler, M., How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24, 809-855 (2014) · Zbl 1311.35040 · doi:10.1007/s00332-014-9205-x
[39] Winkler, M., Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348, 708-729 (2008) · Zbl 1147.92005 · doi:10.1016/j.jmaa.2008.07.071
[40] Winkler, M.; Djie, K. C., Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72, 1044-1064 (2010) · Zbl 1183.92012 · doi:10.1016/j.na.2009.07.045
[41] Zhang, Q.; Li, Y., Global boundedness of solutions to a two-species chemotaxis system, Z. Angew. Math. Phys., 66, 83-93 (2015) · Zbl 1333.35097 · doi:10.1007/s00033-013-0383-4
[42] Zheng, J., Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differ. Equations, 259, 120-140 (2015) · Zbl 1331.92026 · doi:10.1016/j.jde.2015.02.003
[43] Zheng, J., Boundedness in a two-species quasi-linear chemotaxis system with two chemicals, Topol. Methods Nonlinear Anal., 49, 463-480 (2017) · Zbl 1377.35247 · doi:10.12775/tmna.2016.082
[44] Zheng, P.; Mu, C.; Hu, X.; Tian, Y., Boundedness of solutions in a chemotaxis system with nonlinear sensitivity and logistic source, J. Math. Anal. Appl., 424, 509-522 (2015) · Zbl 1307.35069 · doi:10.1016/j.jmaa.2014.11.031
[45] Zheng, P.; Mu, C.; Hu, X., Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source, Discrete Contin. Dyn. Syst. - Ser. A, 35, 2299-2323 (2015) · Zbl 1307.35067 · doi:10.3934/dcds.2015.35.2299
[46] Zheng, P.; Mu, C., Global boundedness in a two-competing-species chemotaxis system with two chemicals, Acta Appl. Math., 148, 157-177 (2017) · Zbl 1360.92022 · doi:10.1007/s10440-016-0083-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.