×

On \(g\)-evaluations with \(\mathbb{L}^p\) domains under jump filtration. (English) Zbl 1382.60085

Summary: Given \(p \in (1, 2)\), the unique \(\mathbb{L}^p\) solutions of backward stochastic differential equations with jumps (BSDEJs) allow us to extend the notion of \(g\)-evaluations, in particular \(g\)-expectations, to the jump case with \(\mathbb{L}^p\) domains. We explore many important properties of the extended \(g\)-evaluations, including optional sampling, upcrossing inequality, Doob-Meyer decomposition, generator representation, and Jensen’s inequality. Most of these results are important for the further development of jump-filtration consistent nonlinear expectations with \(\mathbb{L}^p\) domains in [S. Yao and J. Liu, “Jump-filtration consistent nonlinear expectations with \(\mathbb{L}^p\) domains”, Appl. Math. Optim. (to appear)].

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60J75 Jump processes (MSC2010)
60F25 \(L^p\)-limit theorems
Full Text: DOI

References:

[1] Aazizi, S., and Ouknine, Y.2011. Constrained backward SDEs with jumps and American options. {\it J. Numer. Math. Stoch.} 3:96-111. · Zbl 1360.65032
[2] Ankirchner, S., Blanchet-Scalliet, C., and Eyraud-Loisel, A.2010. Credit risk premia and quadratic BSDEs with a single jump. {\it Int. J. Theor. Appl. Finance} 13:1103-1129. · Zbl 1204.91133
[3] Antonelli, F., and Mancini, C.2016. Solutions of BSDE’s with jumps and quadratic/locally Lipschitz generator. {\it Stochastic Process. Appl.} 126:3124-3144. · Zbl 1347.60067
[4] Artzner, P., Delbaen, F., Eber, J., and Heath, D.1999. Coherent measures of risk. {\it Math. Finance} 9:203-228. · Zbl 0980.91042
[5] Bahlali, K., Eddahbi, M., and Essaky, E.2003. BSDE associated with Levy processes and application to PDIE. {\it J. Appl. Math. Stochastic Anal.} 16:1-17. · Zbl 1027.60057
[6] Bandini, E.2015. Existence and uniqueness for BSDEs driven by a general random measure, possibly non quasi-leftcontinuous. {\it Electron. Commun. Probab.} 20:71,13. · Zbl 1329.60172
[7] Barles, G., Buckdahn, R., and Pardoux, E.1997. Backward stochastic differential equations and integral-partial differential equations. {\it Stochastics Stochastics Rep}. 60:57-83. · Zbl 0878.60036
[8] Barrieu, P., and El Karoui, N.2013. Monotone stability of quadratic semimartingales with applications to unbounded general quadratic BSDEs. {\it Ann. Probab.} 41:1831-1863. · Zbl 1312.60052
[9] Bayraktar, E., and Yao, S.2015. Doubly reflected BSDEs with integrable parameters and related Dynkin games. {\it Stochastic Process. Appl}. 125:4489-4542. · Zbl 1325.60085
[10] Becherer, D.2006. Bounded solutions to backward SDE’s with jumps for utility optimization and indifference hedging. {\it Ann. Appl. Probab.} 16:2027-2054. · Zbl 1132.91457
[11] Becherer, D., Buttner, M., and Kentia, K.2016. On the monotone stability approach to BSDEs with jumps: Extensions, concrete criteria and examples. Available at http://arxiv.org/abs/1607.06644. Access date 22 Jul. 2016. · Zbl 1498.60197
[12] Bismut, J.-M.1973. Conjugate convex functions in optimal stochastic control. {\it J. Math. Anal. Appl.} 44:384-404. · Zbl 0276.93060
[13] Bouchard, B., Possamai, D., Tan, X., and Zhou, C.2015. A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations. Available athttps://arxiv.org/abs/1507.06423. Access date 23 Jul. 2015. · Zbl 1434.60134
[14] Briand, P., and Carmona, R.2000. BSDEs with polynomial growth generators. {\it J. Appl. Math. Stochastic Anal.} 13:207-238. · Zbl 0979.60046
[15] Briand, P., Coquet, F., Hu, Y., Memin, J., and Peng, S.2000. A converse comparison theorem for BSDEs and related properties of g-expectation. {\it Electron. Comm. Probab.} 5:101 - 117 (electronic). · Zbl 0966.60054
[16] Briand, P., Delyon, B., Hu, Y., Pardoux, E., and Stoica, L.2003. Lp solutions of backward stochastic differential equations. {\it Stochastic Process. Appl.} 108:109-129. · Zbl 1075.65503
[17] Briand, P., Delyon, B., and Memin, J.2002. On the robustness of backward stochastic differential equations. {\it Stochastic Process. Appl.} 97:229-253. · Zbl 1058.60041
[18] Buckdahn, R.1993. Backward stochastic differential equations driven by a martingale. Humboldt University, Berlin. [preprint].
[19] Buckdahn, R., and Pardoux, E.1994. BSDE’s with jumps and associated integro-partial differential equations. HumboldtuniversitŁat zu Berlin and universite de Provence. [preprint].
[20] Carbone, R., Ferrario, B., and Santacroce, M.2008. Backward stochastic differential equations driven by cadlag martingales. {\it Theor. Probability Appl.} 52:304-314. · Zbl 1152.60050
[21] Ceci, C., Cretarola, A., and Russo, F.2014. BSDEs under partial information and financial applications. {\it Stochastic Process. Appl.} 124:2628-2653. · Zbl 1329.60174
[22] Chen, Z., and Peng, S.2001. Continuous properties of g-martingales. {\it Chinese Ann. Math. Ser. B} 22:115-128. · Zbl 0980.60084
[23] Cohen, S. N., and Elliott, R. J.2008. Solutions of backward stochastic differential equations on Markov chains. {\it Commun. Stoch. Anal.} 2:251-262. · Zbl 1331.60108
[24] Cohen, S. N., and Elliott, R. J.2010. Comparisons for backward stochastic differential equations on Markov chains and related no-arbitrage conditions. {\it Ann. Appl. Probab.} 20:267-311. · Zbl 1195.60077
[25] Cohen, S. N., and Elliott, R. J.2011. Existence, uniqueness and comparisons for BSDEs in general spaces. {\it Ann. Probab.} 40:2264-2297. · Zbl 1260.60128
[26] Cohen, S. N., Elliott, R. J., and Pearce, C. E. M.2010. A general comparison theorem for backward stochastic differential equations. {\it Adv. in Appl. Probab.} 42:878-898. · Zbl 1221.60079
[27] Cohen, S. N., and Szpruch, L.2012. On Markovian solutions to Markov chain BSDEs. {\it Numer. Algebra Control Optim.} 2:257-269. · Zbl 1254.60056
[28] Confortola, F., and Fuhrman, M.2013. Backward stochastic differential equations and optimal control of marked point processes. {\it SIAM J. Control Optim.} 51:3592-3623. · Zbl 1279.93106
[29] Confortola, F., Fuhrman, M., Jacod, J.2016. Backward stochastic differential equation driven by a marked point process: An elementary approach with an application to optimal control. {\it Ann. Appl. Probab.} 26:1743-1773. · Zbl 1345.60048
[30] Coquet, F., Hu, Y., Memin, J. M., and Peng, S.2002. Filtration-consistent nonlinear expectations and related g-expectations. {\it Probab. Theory Related Fields} 123:1-27. · Zbl 1007.60057
[31] Cvitanic, J., Karatzas, I., and Soner, H. M.1998. Backward stochastic differential equations with constraints on the gains-process. {\it Ann. Probab.} 26:1522-1551. · Zbl 0935.60039
[32] Davis, M. H. A., and Varaiya, P.1974. The multiplicity of an increasing family of -fields. {\it Ann. Probability} 2:958-963. · Zbl 0292.60071
[33] Dellacherie, C., and Meyer, P.-A.1975. {\it Probabilités et potentiel}. Chapitres I à IV, Édition entièrement refondue, Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. XV, Actualit_es Scienti_ques et Industrielles, no. 1372. · Zbl 0323.60039
[34] 1982. Probabilities and Potential. B. Vol. 72 of North-Holland Mathematics Studies, Amsterdam: North Holland Publishing, Co. Theory of martingales. Translated from the French by J. P. Wilson. · Zbl 0494.60002
[35] Dumitrescu, R., and Labart, C.2016. Numerical approximation of doubly reflected BSDEs with jumps and RCLL obstacles. {\it J. Math. Anal. Appl.} 442:206-243. · Zbl 1342.60113
[36] El Karoui, N., and Huang, S.-J.1997. A general result of existence and uniqueness of backward stochastic differential equations. In {\it Backward Stochastic Differential Equations} (Paris, 1995-1996). Vol. 364of Pitman Res. Notes Math. Ser., Longman, Harlow, 27-36. · Zbl 0887.60064
[37] El Karoui, N., Matoussi, A., and Ngoupeyou, A.2016. Quadratic exponential semimartingales and application to BSDEs with jumps. Available at http://arxiv.org/abs/1603.06191. Access date 20 Mar 2016.
[38] El Karoui, N., Peng, S., and Quenez, M. C.1997. Backward stochastic differential equations in finance. {\it Math. Finance} 7:1-71. · Zbl 0884.90035
[39] Follmer, H., and Schied, A.2002. Convex measures of risk and trading constraints. {\it Finance Stoch}. 6:429-447. · Zbl 1041.91039
[40] Fuji, M., and Takahashi, A.2015. Quadratic-exponential growth BSDEs with jumps and their Malliavin’s differentiability. Available at http://arxiv.org/abs/1512.05924. Access date 18 Dec 2015.
[41] Geiss, C., and Labart, C.2016. Simulation of BSDEs with jumps by Wiener chaos expansion. {\it Stochastic Process. Appl.} 126:2123-2162. · Zbl 1336.60138
[42] Geiss, C., and Steinicke, A.2016. L2-variation of Levy driven BSDEs with non-smooth terminal conditions. {\it Bernoulli} 22:995-1025. · Zbl 1335.60089
[43] Graewe, P., Horst, U., and Qiu, J.2015. A non-Markovian liquidation problem and backward SPDEs with singular terminal conditions. {\it SIAM J. Control Optim.} 53:690-711. · Zbl 1312.93112
[44] M. Hassani and Ouknine, Y.2002. On a general result for backward stochastic differential equations. {\it Stoch. Stoch. Rep.} 73:219-240. · Zbl 1013.60041
[45] Hu, Y., Ma, J., Peng, S., and Yao, S.2008. Representation theorems for quadratic F-consistent nonlinear expectations. {\it Stochastic Process. Appl.} 118:1518-1551. · Zbl 1155.60018
[46] Ikeda, N., and Watanabe, S.1981. {\it Stochastic Differential Equations and Diffusion Processes}. vol. 24of North-Holland Mathematical Library. Amsterdam: North-Holland Publishing Co. · Zbl 0495.60005
[47] Jacod, J., and Shiryaev, A. N.1987. {\it Limit Theorems for Stochastic Processes}. Springer-Verlag. 2nd ed., 2003. Berlin: Springer-Verlag. · Zbl 0635.60021
[48] Jeanblanc, M., Mania, M., Santacroce, M., and Schweizer, M.2012. Mean-variance hedging via stochastic control and BSDEs for general semimartingales. {\it Ann. Appl. Probab.} 22:2388-2428. · Zbl 1273.60053
[49] Jeanblanc, M., Matoussi, A., and Ncoupeyou, A.2016. Robust utility maximization problem in model with jumps and unbounded claim. Available at http://arxiv.org/abs/1201.2690v4. Access date 12 Jan 2012.
[50] Kaamaki, N.1979. A sufficient condition for the uniform integrability of exponential martingales. {\it Math. Rep. Toyama Univ.} 2. 1-11. · Zbl 0425.60037
[51] Kazi-Tani, N., Possamai, D., and Zhou, C.2015. Quadratic BSDEs with jumps: A fixed-point approach. {\it Electron. J. Probab.} 20:66, 1-28. · Zbl 1321.60129
[52] Kazi-Tani, N., Possamai, D., and Zhou, C.2015. Second order BSDEs with jumps: Existence and probabilistic representation for fully-nonlinear PIDEs. {\it Electron. J. Probab.} 20: 65, 31. · Zbl 1321.60125
[53] Kazi-Tani, N., Possamai, D., and Zhou, C.2015. Second-order BSDEs with jumps: Formulation and uniqueness. {\it Ann. Appl. Probab.} 25:2867-2908. · Zbl 1325.60091
[54] Kazi-Tani, N., Possamai, D., and Zhou, C.2016. Quadratic BSDEs with jumps: Related nonlinear expectations. {\it Stoch. Dyn.} 16:1650012, 32. · Zbl 1339.60070
[55] Kharroubi, I., and Lim, T.2014. Progressive enlargement of filtrations and backward stochastic differential equations with jumps. {\it J. Theoret. Probab.} 27:683-724. · Zbl 1319.60126
[56] Kharroubi, I., Ma, J., Pham, H., and Zhang, J.2010. Backward SDEs with constrained jumps and quasi-variational inequalities. {\it Ann. Probab.} 38:794-840. · Zbl 1205.60114
[57] Klimsiak, T.2015. Reflected BSDEs on filtered probability spaces. {\it Stochastic Process. Appl.} 125:4204-4241. · Zbl 1323.60079
[58] Klimsiak, T., and Rozkosz, A.2013. Dirichlet forms and semilinear elliptic equations with measure data. {\it J. Funct. Anal.} 265:890-925. · Zbl 1285.35038
[59] Klimsiak, T., and Rozkosz, A.2016. Semilinear elliptic equations with measure data and quasi-regular Dirichlet forms. {\it Colloq. Math.} 145:35-67. · Zbl 1408.35234
[60] Kobylanski, M.2000. Backward stochastic differential equations and partial differential equations with quadratic growth. {\it Ann. Probab.} 28:558-602. · Zbl 1044.60045
[61] Kruse, T., and Popier, A.2016. BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration. {\it Stochastics} 88:491-539. · Zbl 1337.60123
[62] Kruse, T., and Popier, A.2016. Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting. {\it Stochastic Process. Appl.} 126:2554-2592. · Zbl 1344.60057
[63] Kruse, T., and Popier, A.2017. Lp-solution for BSDEs with jumps in the case p < 2: Corrections to the paper BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration. {\it Stochastics}1-29. · Zbl 1394.60064
[64] Laeven, R. J. A., and Stadje, M.2014. Robust portfolio choice and indifference valuation. {\it Math. Oper. Res.} 39:1109-1141. · Zbl 1310.91135
[65] Lejay, A., Mordecki, E., and Torres, S.2014. Numerical approximation of backward stochastic differential equations with jumps. Doctoral dissertation, INRIA.
[66] Liang, G., Lyons, T., and Qian, Z.2011. Backward stochastic dynamics on a filtered probability space. {\it Ann. Probab.} 39:1422-1448. · Zbl 1238.60064
[67] Lin, Q. Q.2003. Nonlinear Doob-Meyer decomposition with jumps. {\it Acta Math. Sin. (Engl. Ser.)} 19:69-78. · Zbl 1048.91066
[68] Ma, J., and Yao, S.2010. On quadratic g-evaluations/expectations and related analysis. {\it Stoch. Anal. Appl.} 28:711-734. · Zbl 1206.60057
[69] Mania, M., and Tevzadze, R.2003. A semimartingale backward equation and the variance-optimal martingale measure under general information flow. {\it SIAM J. Control Optim.} 42:1703-1726. · Zbl 1125.91356
[70] Morlais, M.-A.2009. Utility maximization in a jump market model. {\it Stochastics} 81:1-27. · Zbl 1156.91380
[71] Morlais, M.-A.2010. A new existence result for quadratic BSDEs with jumps with application to the utility maximization problem. {\it Stochastic Process. Appl.} 120:1966-1995. · Zbl 1232.91631
[72] Ngoupeyou, A.2015. Optimisation des portefeuilles d’actifs soumis au risque de defaut, universite d’evry. PhD dissertation.Evry-Val d’Essonne.
[73] Nualart, D., and Schoutens, W.2001. Backward stochastic differential equations and Feynman-Kac formula for Levy processes, with applications in finance. {\it Bernoulli} 7:761-776. · Zbl 0991.60045
[74] Papapantoleon, A., Possama, D., and Saplaouras, A.2016. Existence and uniqueness results for BSDEs with jumps: The whole nine yards. Available at http://arxiv.org/abs/1607.04214. Access date 14 Jul 2016.
[75] Pardoux, E.1997. Generalized discontinuous backward stochastic differential equations. In {\it Backward Stochastic Differential Equations (Paris, 1995{1996)}. Vol. 364 of Pitman Res. Notes Math. Ser.Harlow: Longman, pp. 207-219.} · Zbl 0886.60053
[76] Pardoux, E., and Peng, S. G.1990. Adapted solution of a backward stochastic differential equation. {\it Systems Control Lett}. 14:55-61. · Zbl 0692.93064
[77] Peng, S.1997. {\it Backward SDE and Related g-Expectation}. Vol. 364of Pitman Res. Notes Math. Ser. Harlow: Longman. · Zbl 0892.60066
[78] Peng, S.1999. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer’s type. {\it Probab. Theory Related Fields} 113:473-499. · Zbl 0953.60059
[79] Peng, S.1999. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer’s type. {\it Probab. Theory Related Fields} 113:473-499. · Zbl 0953.60059
[80] Peng, S.2004. Dynamical evaluations. {\it C. R. Math. Acad. Sci. Paris} 339:585-589. · Zbl 1065.60087
[81] Peng, S.2004. {\it Nonlinear Expectations, Nonlinear Evaluations and Risk Measures}. Vol. 1856of Lecture Notes in Math. Berlin: Springer. · Zbl 1127.91032
[82] Protter, P.1990. {\it Stochastic Integration and Differential Equations}. Vol. 21of Applications of Mathematics (New York). A new approach. Berlin: Springer-Verlag. · Zbl 0694.60047
[83] Quenez, M.-C., and Sulem, A.2013. BSDEs with jumps, optimization and applications to dynamic risk measures. {\it Stochastic Process. Appl.} 123:3328-3357. · Zbl 1285.93091
[84] Ren, Y., and Fan, X.2009. Reflected backward stochastic differential equations driven by a Levy process. {\it ANZIAM J}. 50:486-500. · Zbl 1181.60089
[85] Rockafellar, R. T.1970. {\it Convex Analysis}. Princeton Mathematical Series, No. 28. Princeton, N.J.: Princeton University Press. · Zbl 0193.18401
[86] Rosazza Gianin, E. 2006. Risk measures via g-expectations. {\it Insurance Math. Econom.} 39:19-34. · Zbl 1147.91346
[87] Royer, M.2006. Backward stochastic differential equations with jumps and related non-linear expectations. {\it Stochastic Process. Appl.} 116:1358-1376. · Zbl 1110.60062
[88] Shen, L., and Elliott, R. J.2011. Backward stochastic differential equations for a single jump process. {\it Stoch. Anal. Appl.} 29:654-673. · Zbl 1223.60040
[89] Situ, R.1997. On solutions of backward stochastic differential equations with jumps and applications. {\it Stochastic Process. Appl.} 66:209-236. · Zbl 0890.60049
[90] Tang, S. J., and Li, X. J.1994. Necessary conditions for optimal control of stochastic systems with random jumps. {\it SIAM J. Control Optim.} 32:1447-1475. · Zbl 0922.49021
[91] Tevzadze, R.2008. Solvability of backward stochastic differential equations with quadratic growth. {\it Stochastic Process. Appl.} 118:503-515. · Zbl 1175.60064
[92] Xia, J.2000. Backward stochastic differential equation with random measures. {\it Acta Math. Appl. Sinica (English Ser.)} 16:225-234. · Zbl 0965.60061
[93] Yao, S.2016. Lp solutions of reected backward stochastic dierential equations with jumps. Available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2911925, 6 Feb 2017.
[94] Yao, S.2017. Lp solutions of backward stochastic differential equations with jumps. To appear in {\it Stochastic Processes and their Applications} Available at http://arxiv.org/abs/1007.2226.
[95] Yao, S., and Liu, J.2017. Jump-filtration consistent nonlinear expectations with Lp domains. To appear in {\it Applied Mathematics and Optimization} Available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2911936.
[96] Yin, J., and Mao, X.2008. The adapted solution and comparison theorem for backward stochastic differential equations with Poisson jumps and applications. {\it J. Math. Anal. Appl.} 346:345-358. · Zbl 1157.60061
[97] Yosida, K.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.