×

Backward stochastic dynamics on a filtered probability space. (English) Zbl 1238.60064

A backward stochastic differential equation (BSDE) of the form \[ -dY_t = f (s, Y_s, Z_s) ds - Z_t dB_t, \quad Y_T = \xi \] is considered as a functional differential equation running forward in time, i.e., \[ V_T - V_t = \int_t^T f(s, Y_s, Z_s)\, ds; \] when we require \(V_0 = 0\), then this formula is uniquely determined by \(Y\) and \(Z\). Define \[ M_t = \operatorname{E}[ \xi + V_T | \mathcal{F}_t]. \] The authors take the opposite point of view. To every \(V\), it is possible to associate \((Y(V),Z(V))\) by setting \[ Y(V)_t = M(V)_t - V_t = \operatorname{E}[\xi + V_T | \mathcal{F}_t] - V_t, \] and, in martingale representation, \[ \int_t^T Z(V)_s dB_s = M(V)_T - M(V)_t. \] The BSDE can then be written in the equivalent form \[ \frac{dV}{dt} = f(t, Y(V)_t, Z(V)_t), \quad V_0 = 0. \] This is a functional differential equation which can be solved forward in time. The authors further generalize this, by noting that \(V \mapsto Z(V)\) can be written as \(V \mapsto L(M(V))\), where \(M(V)\) is given as above, and \(L\) is an operator from the space of martingales to the space of predictable processes. This can then be treated independently of the martingale representation property. This leads to functional equations of the form \[ \frac{dV}{dt} = f(t, Y(V)_t, L(M(V))_t), \quad V_0 = 0. \] The authors prove uniqueness and local existence of a generalized version of this equation under rather mild (Lipschitz) assumptions. They point out that global uniqueness is not expected to hold without stronger assumptions on the operator \(L\). Under a so called local-in-time property of \(L\), they are then able to establish the existence of global solutions.
This allows to give probabilistic representations of certain nonlinear nonlocal partial differential equations.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H30 Applications of stochastic analysis (to PDEs, etc.)
60J45 Probabilistic potential theory

References:

[1] Antonelli, F. (1993). Backward-forward stochastic differential equations. Ann. Appl. Probab. 3 777-793. · Zbl 0778.92019 · doi:10.1214/aoap/1177005505
[2] Antonelli, F. and Ma, J. (2003). Weak solutions of forward-backward SDE’s. Stoch. Anal. Appl. 21 493-514. · Zbl 1055.60055 · doi:10.1081/SAP-120020423
[3] Bally, V., Pardoux, E. and Stoica, L. (2005). Backward stochastic differential equations associated to a symmetric Markov process. Potential Anal. 22 17-60. · Zbl 1071.60067 · doi:10.1007/s11118-003-6457-8
[4] Barles, G., Buckdahn, R. and Pardoux, E. (1997). Backward stochastic differential equations and integral-partial differential equations. Stochastics Stochastics Rep. 60 57-83. · Zbl 0878.60036
[5] Bismut, J. M. (1973). Analyse convexe et probabilitiés. These, faculté des sciences de Paris, Paris.
[6] Bismut, J.-M. (1976). Théorie probabiliste du contrôle des diffusions. Mem. Amer. Math. Soc. 4 1-130. · Zbl 0323.93046
[7] Bismut, J.-M. (1978). An introductory approach to duality in optimal stochastic control. SIAM Rev. 20 62-78. · Zbl 0378.93049 · doi:10.1137/1020004
[8] Briand, P., Delyon, B., Hu, Y., Pardoux, E. and Stoica, L. (2003). L p solutions of backward stochastic differential equations. Stochastic Process. Appl. 108 109-129. · Zbl 1075.65503 · doi:10.1016/S0304-4149(03)00089-9
[9] Briand, P. and Hu, Y. (2006). BSDE with quadratic growth and unbounded terminal value. Probab. Theory Related Fields 136 604-618. · Zbl 1109.60052 · doi:10.1007/s00440-006-0497-0
[10] Briand, P. and Hu, Y. (2008). Quadratic BSDEs with convex generators and unbounded terminal conditions. Probab. Theory Related Fields 141 543-567. · Zbl 1141.60037 · doi:10.1007/s00440-007-0093-y
[11] Buckdahn, R. and Engelbert, H. J. (2007). On the continuity of weak solutions of backward stochastic differential equations. Teor. Veroyatn. Primen. 52 190-199. · Zbl 1153.60032 · doi:10.1137/S0040585X9798292X
[12] Buckdahn, R., Engelbert, H. J. and Răşcanu, A. (2004). On weak solutions of backward stochastic differential equations. Teor. Veroyatn. Primen. 49 70-108. · Zbl 1095.60019 · doi:10.1137/S0040585X97980877
[13] Cheridito, P., Soner, M., Touzi, N. and Victoir, N. (2007). Second order backward stochastic differential equations and fully non-linear parabolic PDEs. Comm. Pure Appl. Math. 60 1081-1110. · Zbl 1121.60062 · doi:10.1002/cpa.20168
[14] Cvitanić, J. and Karatzas, I. (1996). Backward stochastic differential equations with reflection and Dynkin games. Ann. Probab. 24 2024-2056. · Zbl 0876.60031 · doi:10.1214/aop/1041903216
[15] Duffie, D. and Epstein, L. G. (1992). Stochastic differential utility. With an appendix by the authors and C. Skiadas. Econometrica 60 353-394. · Zbl 0763.90005 · doi:10.2307/2951600
[16] El Karoui, N., Hamadene, S. and Matoussi, A. (2009). BSDEs and Applications. Indifference Pricing : Theory and Applications 267-320. Princeton Univ. Press, Princeton, NJ.
[17] El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S. and Quenez, M. C. (1997). Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25 702-737. · Zbl 0899.60047 · doi:10.1214/aop/1024404416
[18] El Karoui, N. and Mazliak, L., eds. (1997). Backward Stochastic Differential Equations. Pitman Research Notes in Mathematics Series 364 . Longman, Harlow. · Zbl 0866.00052
[19] El Karoui, N., Peng, S. and Quenez, M. C. (1997). Backward stochastic differential equations in finance. Math. Finance 7 1-71. · Zbl 0884.90035 · doi:10.1111/1467-9965.00022
[20] Gilbarg, D. and Trudinger, N. S. (2001). Elliptic Partial Differential Equations of Second Order . Springer, Berlin. · Zbl 1042.35002
[21] Hamadene, S., Lepeltier, J. P. and Matoussi, A. (1997). Double barrier backward SDEs with continuous coefficient. In Backward Stochastic Differential Equations ( Paris , 1995 - 1996). Pitman Research Notes in Mathematics Series 364 161-175. Longman, Harlow. · Zbl 0887.60065
[22] Hu, Y., Imkeller, P. and Müller, M. (2005). Utility maximization in incomplete markets. Ann. Appl. Probab. 15 1691-1712. · Zbl 1083.60048 · doi:10.1214/105051605000000188
[23] Hu, Y. and Peng, S. (1995). Solution of forward-backward stochastic differential equations. Probab. Theory Related Fields 103 273-283. · Zbl 0831.60065 · doi:10.1007/BF01204218
[24] Kobylanski, M. (2000). Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28 558-602. · Zbl 1044.60045 · doi:10.1214/aop/1019160253
[25] Kohlmann, M. and Zhou, X. Y. (2000). Relationship between backward stochastic differential equations and stochastic controls: A linear-quadratic approach. SIAM J. Control Optim. 38 1392-1407 (electronic). · Zbl 0960.60052 · doi:10.1137/S036301299834973X
[26] Lepeltier, J. P. and San Martin, J. (1997). Backward stochastic differential equations with continuous coefficient. Statist. Probab. Lett. 32 425-430. · Zbl 0904.60042 · doi:10.1016/S0167-7152(96)00103-4
[27] Ma, J., Protter, P. and Yong, J. M. (1994). Solving forward-backward stochastic differential equations explicitly-a four step scheme. Probab. Theory Related Fields 98 339-359. · Zbl 0794.60056 · doi:10.1007/BF01192258
[28] Ma, J. and Yong, J. (1999). Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Math. 1702 . Springer, Berlin. · Zbl 0927.60004
[29] Ma, J., Zhang, J. and Zheng, Z. (2008). Weak solutions for forward-backward SDEs-a martingale problem approach. Ann. Probab. 36 2092-2125. · Zbl 1154.60045 · doi:10.1214/08-AOP0383
[30] Majda, A. (1984). Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Mathematical Sciences 53 . Springer, New York. · Zbl 0537.76001
[31] Pardoux, É. and Peng, S. (1992). Backward stochastic differential equations and quasilinear parabolic partial differential equations. In Stochastic Partial Differential Equations and Their Applications ( Charlotte , NC , 1991). Lecture Notes in Control and Inform. Sci. 176 200-217. Springer, Berlin. · Zbl 0766.60079 · doi:10.1007/BFb0007334
[32] Pardoux, É. and Peng, S. G. (1990). Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14 55-61. · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
[33] Peng, S. and Wu, Z. (1999). Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 37 825-843. · Zbl 0931.60048 · doi:10.1137/S0363012996313549
[34] Peng, S. G. (1990). A general stochastic maximum principle for optimal control problems. SIAM J. Control Optim. 28 966-979. · Zbl 0712.93067 · doi:10.1137/0328054
[35] Peng, S. G. (1991). Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics Stochastics Rep. 37 61-74. · Zbl 0739.60060
[36] Rong, S. (1997). On solutions of backward stochastic differential equations with jumps and applications. Stochastic Process. Appl. 66 209-236. · Zbl 0890.60049 · doi:10.1016/S0304-4149(96)00120-2
[37] Rouge, R. and El Karoui, N. (2000). Pricing via utility maximization and entropy. Math. Finance 10 259-276. · Zbl 1052.91512 · doi:10.1111/1467-9965.00093
[38] Tang, S. J. and Li, X. J. (1994). Maximum principle for optimal control of distributed parameter stochastic systems with random jumps. In Differential Equations , Dynamical Systems , and Control Science. Lecture Notes in Pure and Appl. Math. 152 867-890. Dekker, New York. · Zbl 0811.49021
[39] Yong, J. (1997). Finding adapted solutions of forward-backward stochastic differential equations: Method of continuation. Probab. Theory Related Fields 107 537-572. · Zbl 0883.60053 · doi:10.1007/s004400050098
[40] Yong, J. and Zhou, X. Y. (1999). Stochastic Controls : Hamiltonian Systems and HJB Equations. Applications of Mathematics ( New York ) 43 . Springer, New York. · Zbl 0943.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.