×

Progressive enlargement of filtrations and backward stochastic differential equations with jumps. (English) Zbl 1319.60126

The authors combine results on Brownian backward stochastic differential equations (BSDEs) and progressive enlargement of filtrations to prove a general existence and uniqueness result for the solutions to BDSEs with random marked jumps. The methodology is illustrated by applying it to the pricing and hedging of European options and the problem of utility maximization in markets with jumps.
Let \((\Omega,\mathcal G, \mathbb P)\) be a probability space, and fix a right-continuous filtration \(\mathbb F = (\mathcal F _{t})_{t \geq 0}\) generated by a \(d\)-dimensional Brownian motion \(W\). Consider a finite sequence \((\tau_{k}, \zeta_{k})_{1\leq k \leq n}\), where \((\tau_{k})_{1\leq k \leq n}\) is a nondecreasing sequence of random times and \((\zeta_{k})_{1\leq k \leq n}\) is a sequence of random marks valued in some Borel subset \(E\) of \(\mathbb R^{m}\). The random measure \(\mu\) associated with the sequence \((\tau_{k}, \zeta_{k})_{1\leq k \leq n}\) is defined by \[ \mu([0,t]\times B) = \sum_{k=1}^{n} I_{[\tau_{k} \leq t, \zeta_{k} \in B]}. \]
The progressive enlargement of \(\mathbb F\) is the smallest right-continuous filtration \(\mathbb G = (\mathcal G _{t})_{t \geq 0}\) containing \(\mathbb F\) such that for each \(k = 1, \dots, n\), \(\tau_{k}\) is a \(\mathbb G\)-stopping time and \(\zeta_{k}\) is \(\mathcal G_{\tau_{k}}\)-measurable. The \(\sigma\)-algebra generated by the left-continuous \(\mathbb G\)-progressively measurable processes is denoted by \(\mathcal P \mathcal M (\mathbb G)\); the space of essentially bounded \(\mathbb R\)-valued \(\mathcal P \mathcal M (\mathbb G)\)-measurable processes defined on \([0,T]\) is denoted by \(\mathcal S ^{\infty}_{\mathbb G}[0,T]\).
The authors consider the following type of BSDEs: find \((Y,Z,U) \in \mathcal S ^{\infty}_{\mathbb G}[0,T] \times L^{2}_{\mathbb G}[0,T] \times L^{2}(\mu)\) such that for all \(0 \leq t \leq T\), \[ Y_{t} = \xi + \int_{(t,T]}f(s,Y_{s},Z_{s},U_{s})\, ds-\int_{(t,T]}Z_{s} d W_{s} - \int_{(t,T]\times E}U_{s}(e)\,d \mu, \] where \(\xi\) is a \(\mathcal G_{T}\)-measurable random variable of the form \[ \xi = \sum_{k=0}^{n}\xi^{k}((\tau_{i})_{i\leq k},(\zeta_{i})_{i\leq k}) \cdot I_{[\tau_{k}\leq T < \tau_{k+1}]}, \] and \(f : [0,T] \times \Omega \times \mathbb R \times \mathbb R^{d} \times\mathrm{Bor}(E,\mathbb R) \rightarrow \mathbb R\) is sufficiently measurable; \(\mathrm{Bor}(E,\mathbb R)\) is the set of Borel functions from \(E\) to \(\mathbb R\).
It is shown that such BSDEs have a solution if a sequence of Brownian BSDEs of the form \[ Y^{k}_{t} = \xi^{k} + \int_{(t,T]}f^{k}(s,Y^{k}_{s},Z^{k}_{s},Y^{k+1}_{s} - Y^{k}_{s})\, d s - \int_{(t,T]}Z^{k}_{s}\, dW_s \] all have solutions satisfying some boundedness conditions; \(f^{k},Y^{k},Z^{k}\) denote the canonical decomposition of \(f,Y,Z\) as \[ X_{t} = X^{0}_{t} \cdot I_{t \leq \tau_{1}} + X^{n}_{t}((\tau_{i})_{i\leq n},(\zeta_{i})_{i\leq n}) \cdot I_{\tau_{n} \leq t} + \sum_{k=1}^{n-1}X^{k}_{t}((\tau_{i})_{i\leq k},(\zeta_{i})_{i\leq k}) \cdot I_{\tau_{k} \leq t \leq \tau_{k+1}}. \] For quadratic BSDEs with jumps, the existence of solutions is obtained from this existence theorem under mild assumptions. Based on a comparison theorem, a general result establishing the uniqueness of solutions is also provided, which takes a particularly simple form for quadratic BSDEs.
The authors present two applications of this theory: they derive explicit formulas for the price and hedging strategy of a European option on an underlier whose price may jump; and they solve for a self-financing strategy which maximizes an exponential utility on trading an asset subject to counterparty credit risk (the default of the counterparty induces jumps in the asset price). The trading strategy is obtained as the solution to a minimization problem.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60G57 Random measures
60J75 Jump processes (MSC2010)
91G20 Derivative securities (option pricing, hedging, etc.)
91G40 Credit risk
91G80 Financial applications of other theories
93E20 Optimal stochastic control

References:

[1] Ankirchner, S., Blanchet-Scalliet, C., Eyraud-Loisel, A.: Credit risk premia and quadratic BSDEs with a single jump. Int. J. Theor. Appl. Finance 13(7), 1103-1129 (2010) · Zbl 1204.91133 · doi:10.1142/S0219024910006133
[2] Bielecki, T., Rutkowski, M.: Credit Risk: Modelling, Valuation and Hedging. Springer, Berlin (2004) · Zbl 0979.91050
[3] Bielecki, T., Jeanblanc, M., Rutkowski, M.: Stochastic Methods in Credit Risk Modelling. Lectures Notes in Mathematics, vol. 1856, pp. 27-128. Springer, Berlin (2004) · Zbl 1134.91023
[4] Bielecki, T.; Jeanblanc, M.; Carmona, R. (ed.), Indifference prices in indifference pricing (2008), Princeton
[5] Briand, P., Hu, Y.: BSDE with quadratic growth and unbounded terminal value. Probab. Theory Relat. Fields 136(4), 604-618 (2006) · Zbl 1109.60052 · doi:10.1007/s00440-006-0497-0
[6] Briand, P., Hu, Y.: Quadratic BSDEs with convex generators and unbounded terminal conditions. Probab. Theory Relat. Fields 141, 543-567 (2008) · Zbl 1141.60037 · doi:10.1007/s00440-007-0093-y
[7] Callegaro, G.: Credit risk models under partial information. Ph.D. Thesis Scuola Normal Superior di Pisa and Université d’Évry Val d’Essonne (2010) · Zbl 1083.60048
[8] Delbaen, F., Hu, Y., Richou, A.: On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions. Ann. Inst. Henri Poincaré Probab. Stat. 47(2), 559-574 (2011) · Zbl 1225.60093 · doi:10.1214/10-AIHP372
[9] Dellacherie, C., Meyer, P.A.: Probabilités et Potentiel—Chapitres I à IV. Hermann, Paris (1975) · Zbl 0323.60039
[10] Dellacherie, C., Meyer, P.A.: Probabilités et Potentiel—Chapitres V à VIII. Hermann, Paris (1980) · Zbl 0464.60001
[11] Duffie, D., Singleton, K.: Credit Risk: Pricing, Measurement and Management. Princeton University Press, Princeton (2003)
[12] El Karoui, N., Jeanblanc, M., Jiao, Y.: Modelling successive default events. Preprint (2010) · Zbl 1194.91187
[13] He, S., Wang, J., Yan, J.: Semimartingale Theory and Stochastic Calculus. Science Press, CRC Press, New York (1992) · Zbl 0781.60002
[14] Hu, Y., Imkeller, P., Muller, M.: Utility maximization in incomplete markets. Ann. Appl. Probab. 15, 1691-1712 (2005) · Zbl 1083.60048 · doi:10.1214/105051605000000188
[15] Jacod, J.: Grossissement initial, hypothese H’ et théorème de Girsanov, séminaire de calcul stochastique. Lect. Notes Math. 1118, 1982-1983 (1987)
[16] Jarrow, R.A., Yu, F.: Counterparty risk and the pricing of defaultable securities. J. Finance 56, 1765-1799 (2001) · doi:10.1111/0022-1082.00389
[17] Jeanblanc, M., Le Cam, Y.: Progressive enlargement of filtrations with initial times. Stoch. Process. Their Appl. 119(8), 2523-2543 (2009) · Zbl 1175.60041 · doi:10.1016/j.spa.2008.12.009
[18] Jeulin, T.: Semimartingales et Grossissements d’une Filtration. Lect. Notes in Maths, vol. 883. Springer, Berlin (1980) · Zbl 0444.60002
[19] Jeulin, T., Yor, M.: Grossissement de Filtration: Exemples et Applications. Lect. Notes in Maths, vol. 1118. Springer, Berlin (1985) · Zbl 0547.00034 · doi:10.1007/BFb0075765
[20] Jiao, Y., Pham, H.: Optimal investment with counterparty risk: a default-density modeling approach. Finance Stoch. 15(4), 725-753 (2011) · Zbl 1303.91159 · doi:10.1007/s00780-010-0140-x
[21] Kazamaki, N.: A sufficient condition for the uniform integrability of exponential martingales. Math. Rep., Toyama Univ. 2, 1-11 (1979) · Zbl 0425.60037
[22] Kobylanski, M.: Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28, 558-602 (2000) · Zbl 1044.60045 · doi:10.1214/aop/1019160253
[23] Lim, T., Quenez, M.C.: Utility maximization in incomplete market with default. Electron. J. Probab. 16, 1434-1464 (2011) · Zbl 1245.49039 · doi:10.1214/EJP.v16-918
[24] Morlais, M.A.: Utility maximization in a jump market model. Stoch. Stoch. Rep. 81, 1-27 (2009) · Zbl 1156.91380 · doi:10.1080/17442500802201425
[25] Morlais, M.A.: A new existence result for quadratic BSDEs with jumps with application to the utility maximization problem. Stoch. Process. Appl. 120(10), 1966-1995 (2010) · Zbl 1232.91631 · doi:10.1016/j.spa.2010.05.011
[26] Oksendal, B.: Stochastic Differential Equations. An Introduction with Applications, 6th edn. Springer, Berlin (2007) · Zbl 1025.60026
[27] Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 37, 61-74 (1990) · Zbl 0692.93064
[28] Pham, H.: Stochastic control under progressive enlargement of filtrations and applications to multiple defaults risk management. Stoch. Process. Appl. 120, 1795-1820 (2010) · Zbl 1196.60141 · doi:10.1016/j.spa.2010.05.003
[29] Protter, P.: Stochastic Integration and Differential Equation, 2nd edn., vol. 21. Corrected 3-rd Printing, Stochastic Modeling and Applied Probability. Springer (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.