×

Anti de Sitter black holes and branes in dynamical Chern-Simons gravity: perturbations, stability and the hydrodynamic modes. (English) Zbl 1298.83073

Summary: Dynamical Chern-Simons (DCS) theory is an extension of General Relativity in which the gravitational field is coupled to a scalar field through a parity violating term. We study perturbations of anti-de Sitter black holes and branes in such a theory, and show that the relevant equations reduce to a set of coupled ODEs which can be solved efficiently through a series expansion. We prove numerically that black holes and branes in DCS gravity are stable against gravitational and scalar perturbations in the entire parameter space. Furthermore, by applying the AdS/CFT duality, were late black hole perturbations to hydrodynamic quantities in the dual field theory, which is a (2 + 1)-dimensional isotropic fluid with broken spatial parity. The Chern-Simons term does not affect the entropy to viscosity ratio and the relaxation time, but instead quantities that enter the shear mode at order \(q^{4}\) in the small momentum limit, for example the Hall viscosity and other quantities related to second and third order hydrodynamics. We provide explicit corrections to the gravitational hydrodynamic mode to first relevant order in the couplings.

MSC:

83C57 Black holes
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T20 Quantum field theory on curved space or space-time backgrounds
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
58J28 Eta-invariants, Chern-Simons invariants
82D15 Statistical mechanics of liquids
76Y05 Quantum hydrodynamics and relativistic hydrodynamics

References:

[1] S. Deser, R. Jackiw and S. Templeton, Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett.48 (1982) 975 [SPIRES]. · doi:10.1103/PhysRevLett.48.975
[2] A. Lue, L.-M. Wang and M. Kamionkowski, Cosmological signature of new parity-violating interactions, Phys. Rev. Lett.83 (1999) 1506 [astro-ph/9812088] [SPIRES]. · doi:10.1103/PhysRevLett.83.1506
[3] R. Jackiw and S.Y. Pi, Chern-Simons modification of general relativity, Phys. Rev.D 68 (2003) 104012 [gr-qc/0308071] [SPIRES].
[4] S. Alexander and N. Yunes, Chern-Simons Modified General Relativity, Phys. Rept.480 (2009) 1 [arXiv:0907.2562] [SPIRES]. · doi:10.1016/j.physrep.2009.07.002
[5] S. Weinberg, A Tree Theorem for Inflation, Phys. Rev.D 78 (2008) 063534 [arXiv:0805.3781] [SPIRES].
[6] S.H.-S. Alexander, M.E. Peskin and M.M. Sheikh-Jabbari, Leptogenesis from gravity waves in models of inflation, Phys. Rev. Lett.96 (2006) 081301 [hep-th/0403069] [SPIRES]. · doi:10.1103/PhysRevLett.96.081301
[7] J. García-Bellido, M. Garcia-Perez and A. Gonzalez-Arroyo, Chern-Simons production during preheating in hybrid inflation models, Phys. Rev.D 69 (2004) 023504 [hep-ph/0304285] [SPIRES].
[8] S.H.S. Alexander and S.J. Gates, Jr., Can the string scale be related to the cosmic baryon asymmetry?, JCAP06 (2006) 018 [hep-th/0409014] [SPIRES].
[9] J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge Univ. Pr., Cambridge U.K. (1998). · Zbl 1006.81521 · doi:10.1017/CBO9780511618123
[10] A. Ashtekar, A.P. Balachandran and S. Jo, The CP problem in quantum gravity, Int. J. Mod. Phys.A4 (1989) 1493 [SPIRES].
[11] V. Taveras and N. Yunes, The Barbero-Immirzi Parameter as a Scalar Field: K-Inflation from Loop Quantum Gravity?, Phys. Rev.D 78 (2008) 064070 [arXiv:0807.2652] [SPIRES].
[12] S. Mercuri and V. Taveras, Interaction of the Barbero-Immirzi Field with Matter and Pseudo-Scalar Perturbations, Phys. Rev.D 80 (2009) 104007 [arXiv:0903.4407] [SPIRES].
[13] E. Barausse and T.P. Sotiriou, Perturbed Kerr Black Holes can probe deviations from General Relativity, Phys. Rev. Lett.101 (2008) 099001 [arXiv:0803.3433] [SPIRES]. · doi:10.1103/PhysRevLett.101.099001
[14] E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav.26 (2009) 163001 [arXiv:0905.2975] [SPIRES]. · Zbl 1173.83001 · doi:10.1088/0264-9381/26/16/163001
[15] V. Cardoso and L. Gualtieri, Perturbations of Schwarzschild black holes in Dynamical Chern-Simons modified gravity, Phys. Rev.D 80 (2009) 064008 [arXiv:0907.5008] [SPIRES].
[16] C. Molina, P. Pani, V. Cardoso and L. Gualtieri, Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity, Phys. Rev.D 81 (2010) 124021 [arXiv:1004.4007] [SPIRES].
[17] H. Ahmedov and A.N. Aliev, Black String and Gódel type Solutions of Chern-Simons Modified Gravity, Phys. Rev.D 82 (2010) 024043 [arXiv:1003.6017] [SPIRES].
[18] O. Saremi and D.T. Son, Hall viscosity from gauge/gravity duality, arXiv:1103.4851 [SPIRES]. · Zbl 1348.81325
[19] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [Adv. Theor. Math. Phys.2 (1998) 231] [hep-th/9711200] [SPIRES]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[20] P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev.D 72 (2005) 086009 [hep-th/0506184] [SPIRES].
[21] P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett.94 (2005) 111601 [hep-th/0405231] [SPIRES]. · doi:10.1103/PhysRevLett.94.111601
[22] S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP02 (2008) 045 [arXiv:0712.2456] [SPIRES]. · doi:10.1088/1126-6708/2008/02/045
[23] J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP01 (2009) 055 [arXiv:0809.2488] [SPIRES]. · Zbl 1243.83037 · doi:10.1088/1126-6708/2009/01/055
[24] J.P.S. Lemos, Cylindrical black hole in general relativity, Phys. Lett.B 353 (1995) 46 [gr-qc/9404041] [SPIRES].
[25] T. Torii, K. Maeda and M. Narita, Scalar hair on the black hole in asymptotically anti-de Sitter spacetime, Phys. Rev.D 64 (2001) 044007 [SPIRES].
[26] A.S. Miranda, J. Morgan and V.T. Zanchin, Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence, JHEP11 (2008) 030 [arXiv:0809.0297] [SPIRES]. · doi:10.1088/1126-6708/2008/11/030
[27] J. Morgan, V. Cardoso, A.S. Miranda, C. Molina and V.T. Zanchin, Gravitational quasinormal modes of AdS black branes in d spacetime dimensions, JHEP09 (2009) 117 [arXiv:0907.5011] [SPIRES]. · doi:10.1088/1126-6708/2009/09/117
[28] G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev.D 62 (2000) 024027 [hep-th/9909056] [SPIRES].
[29] V. Cardoso and J.P.S. Lemos, Quasi-normal modes of Schwarzschild anti-de Sitter black holes: Electromagnetic and gravitational perturbations, Phys. Rev.D 64 (2001) 084017 [gr-qc/0105103] [SPIRES].
[30] E. Berti, V. Cardoso and P. Pani, Breit-Wigner resonances and the quasinormal modes of anti-de Sitter black holes, Phys. Rev.D 79 (2009) 101501 [arXiv:0903.5311] [SPIRES].
[31] V. Cardoso and J.P.S. Lemos, Quasi-normal modes of toroidal, cylindrical and planar black holes in anti-de Sitter spacetimes, Class. Quant. Grav.18 (2001) 5257 [gr-qc/0107098] [SPIRES]. · Zbl 0993.83019 · doi:10.1088/0264-9381/18/23/319
[32] R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP04 (2008) 100 [arXiv:0712.2451] [SPIRES]. · Zbl 1246.81352 · doi:10.1088/1126-6708/2008/04/100
[33] M. Natsuume, String theory implications on causal hydrodynamics, Prog. Theor. Phys. Suppl.174 (2008) 286 [arXiv:0807.1394] [SPIRES]. · doi:10.1143/PTPS.174.286
[34] M. Natsuume and T. Okamura, Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality, Phys. Rev.D 77 (2008) 066014 [arXiv:0712.2916] [SPIRES].
[35] G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP09 (2002) 043 [hep-th/0205052] [SPIRES]. · doi:10.1088/1126-6708/2002/09/043
[36] G.D. Moore and K.A. Sohrabi, Kubo Formulae for Second-Order Hydrodynamic Coefficients, Phys. Rev. Lett.106 (2011) 122302 [arXiv:1007.5333] [SPIRES]. · doi:10.1103/PhysRevLett.106.122302
[37] N. Banerjee and S. Dutta, Shear Viscosity to Entropy Density Ratio in Six Derivative Gravity, JHEP07 (2009) 024 [arXiv:0903.3925] [SPIRES]. · doi:10.1088/1126-6708/2009/07/024
[38] A. Buchel, R.C. Myers and A. Sinha, Beyond η s =1/4π, JHEP03 (2009) 084 [arXiv:0812.2521] [SPIRES]. · doi:10.1088/1126-6708/2009/03/084
[39] N. Banerjee and S. Dutta, Higher Derivative Corrections to Shear Viscosity from Graviton’s Effective Coupling, JHEP03 (2009) 116 [arXiv:0901.3848] [SPIRES]. · doi:10.1088/1126-6708/2009/03/116
[40] M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev.D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].
[41] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [SPIRES]. · Zbl 1404.82086 · doi:10.1103/PhysRevLett.101.031601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.