×

A feedback control strategy for the airfoil system under non-Gaussian colored noise excitation. (English) Zbl 1374.70068

Summary: The stability of a binary airfoil with feedback control under stochastic disturbances, a non-Gaussian colored noise, is studied in this paper. First, based on some approximated theories and methods the non-Gaussian colored noise is simplified to an Ornstein-Uhlenbeck process. Furthermore, via the stochastic averaging method and the logarithmic polar transformation, one dimensional diffusion process can be obtained. At last by applying the boundary conditions, the largest Lyapunov exponent which can determine the almost-sure stability of the system and the effective region of control parameters is calculated.{
©2014 American Institute of Physics}

MSC:

70Q05 Control of mechanical systems
93B52 Feedback control
93E15 Stochastic stability in control theory
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
Full Text: DOI

References:

[1] Kehoe, M. W., NASA Technical Memorandum No. 4720, 1995.
[2] Theodorsen, T., NASA Report No. 496 (1935)
[3] Ibrahim, R. A.; Orono, P. O.; Madaboosi, S. R., AIAA J., 28, 4, 694-702 (1990) · Zbl 0701.73036 · doi:10.2514/3.10448
[4] Ibrahim, R. A.; Orono, P. O., Int. J. Non Linear Mech., 26, 6, 867-883 (1991) · doi:10.1016/0020-7462(91)90038-U
[5] Poirel, D.; Price, S. J., J. Fluids Struct., 18, 1, 23-42 (2003) · doi:10.1016/S0889-9746(03)00074-4
[6] Poirel, D.; Price, S. J., Nonlinear Dyn., 48, 4, 423-435 (2007) · Zbl 1181.76076 · doi:10.1007/s11071-006-9096-y
[7] Kim, M.; Han, J.; Heo, H., 440-443 (1995)
[8] Heo, H.; Cho, Y. H.; Kim, D. J., J. Sound Vib., 267, 2, 335-354 (2003) · Zbl 1236.74203 · doi:10.1016/S0022-460X(03)00184-6
[9] Zhao, D. M., Bifurcation and Chaos of Nonlinear Flutter or Chatter System (2009)
[10] Fuentes, M. A.; Wio, H. S.; Toral, R., Physica A, 303, 1-2, 91-104 (2002) · Zbl 0979.82051 · doi:10.1016/S0378-4371(01)00435-6
[11] Bouzat, S.; Wio, H. S., Physica A, 351, 1, 69-78 (2005) · doi:10.1016/j.physa.2004.12.008
[12] Liu, J. K.; Zhao, L. C., J. Sound Vib., 154, 1, 117-124 (1992) · Zbl 0922.76215 · doi:10.1016/0022-460X(92)90407-O
[13] Hu, D. L.; Huang, Y.; Liu, X. B., Nonlinear Dyn., 70, 3, 1847-1859 (2012) · Zbl 1268.93146 · doi:10.1007/s11071-012-0577-x
[14] Li, X.; Liu, X. B., Nonlinear Dyn., 73, 3, 1601-1614 (2013) · Zbl 1281.76023 · doi:10.1007/s11071-013-0888-6
[15] Flandro, G. A.; Mcmahon, H. M.; Roach, R. L., Basic Aerodynamics (2012)
[16] Arnold, L., Random Dynamical Systems (1998) · Zbl 0906.34001
[17] Lin, Y. K.; Cai, G. Q., Probabilistic Strctural Dynamics (1995)
[18] Khasminskii, R.; Moshchuk, N., SIAM J. Appl. Math., 58, 1, 245-256 (1998) · Zbl 0924.60036 · doi:10.1137/S003613999529589X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.