×

Moment Lyapunov exponent and stochastic stability for a binary airfoil driven by an ergodic real noise. (English) Zbl 1281.76023

Summary: This paper presents a new method, through which the \(p\)th moment stability of a binary airfoil subjected to an ergodic real noise is obtained. The excitation included is assumed to be an integrable function of an \(n\)-dimensional Ornatein-Uhlenbeck vector process that is the output of a linear filter system and for which the strong mixing condition and the delicate balance condition are removed in the present study. By using a perturbation method and the spectrum representations of both the Fokker-Planck operator and its adjoint operator of the linear filter system, the asymptotic expressions of the \(p\)th moment Lyapunov exponent are obtained, and the results of which match the numerical results.

MSC:

76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
35Q84 Fokker-Planck equations
93E15 Stochastic stability in control theory
34D08 Characteristic and Lyapunov exponents of ordinary differential equations
Full Text: DOI

References:

[1] Woolston, D.S., Runyan, H.L., Andrews, R.E.: An investigation of effects of certain types of structural nonlinearities on wing and control surface flutter. J. Aeronaut. Sci. 24, 57-63 (1957)
[2] Lee, B. H.K.; LeBlanc, P.; Laboratory, H. S.A., Flutter analysis of a two-dimensional airfoil with cubic non-linear restoring force (1986)
[3] Alighanbari, H., Price, S.: The post-Hopf-bifurcation response of an airfoil in incompressible two-dimensional flow. Nonlinear Dyn. 10, 381-400 (1996) · doi:10.1007/BF00045483
[4] Zhao, Y.H.: Stability of a time-delayed aeroelastic system with a control surface. Aerosp. Sci. Technol. 15, 72-77 (2011) · doi:10.1016/j.ast.2010.05.008
[5] Chen, Y.M., Liu, J.K., Meng, G.: Analysis methods for nonlinear flutter of a two-dimensional airfoil: a review. J. Vib. Shock 30, 129-134 (2011)
[6] Chen, F., Zhou, L., Chen, Y.: Bifurcation and chaos of an airfoil with cubic nonlinearity in incompressible flow. Sci. China, Technol. Sci. 54, 1954-1965 (2011) · Zbl 1237.37061 · doi:10.1007/s11431-011-4456-3
[7] Ibrahim, R., Orono, P., Madaboosi, S.: Stochastic flutter of a panel subjected to random in-plane forces. I: two mode interaction. AIAA J. 28, 694-702 (1990) · Zbl 0701.73036 · doi:10.2514/3.10448
[8] Ibrahim, R., Orono, P.: Stochastic non-linear flutter of a panel subjected to random in-plane forces. Int. J. Non-Linear Mech. 26, 867-883 (1991) · doi:10.1016/0020-7462(91)90038-U
[9] Poirel, D., Price, S.J.: Random binary (coalescence) flutter of a two-dimensional linear airfoil. J. Fluids Struct. 18, 23-42 (2003) · doi:10.1016/S0889-9746(03)00074-4
[10] Poirel, D., Price, S.J.: Bifurcation characteristics of a two-dimensional structurally non-linear airfoil in turbulent flow. Nonlinear Dyn. 48, 423-435 (2007) · Zbl 1181.76076 · doi:10.1007/s11071-006-9096-y
[11] Huang, Y., Hu, D., Liu, X.: Center manifold reduction for the flutter of airfoils with gust loading. J. Fluids Struct. 30, 133-140 (2012) · doi:10.1016/j.jfluidstructs.2012.02.009
[12] Zhao, D., Zhang, Q., Tan, Y.: Random flutter of a 2-DOF nonlinear airfoil in pitch and plunge with freeplay in pitch. Nonlinear Dyn. 58, 643-654 (2009) · Zbl 1183.70064 · doi:10.1007/s11071-009-9507-y
[13] Huang, Y., Fang, C.J., Liu, X.B.: On stochastic dynamical behaviors of binary airfoil with nonlinear structure. Acta Aeronaut. Astronaut. Sin. 31(10), 1946-1952 (2010) · Zbl 1368.93766
[14] Arnold, L.: Random Dynamical Systems. Springer, Berlin (1998) · Zbl 0906.34001 · doi:10.1007/978-3-662-12878-7
[15] Molčanov, S.: The structure of eigenfunctions of one-dimensional unordered structures. Izv. Math. 12, 69-101 (1978) · Zbl 0401.34023 · doi:10.1070/IM1978v012n01ABEH001841
[16] Arnold, L.: A formula connecting sample and moment stability of linear stochastic systems. SIAM J. Appl. Math. 44, 793-802 (1984) · Zbl 0561.93063 · doi:10.1137/0144057
[17] Arnold, L., Doyle, M., Namachchivaya, N.S.: Small noise expansion of moment Lyapunov exponents for two-dimensional systems. Dyn. Stab. Syst. 12, 187-211 (1997) · Zbl 0890.60055 · doi:10.1080/02681119708806244
[18] Namachchivaya, N.S., Van Roessel, H., Doyle, M.: Moment Lyapunov exponent for two coupled oscillators driven by real noise. SIAM J. Appl. Math. 56, 1400-1423 (1996) · Zbl 0869.60053 · doi:10.1137/S003613999528138X
[19] Khasminskii, R., Moshchuk, N.: Moment Lyapunov exponent and stability index for linear conservative system with small random perturbation. SIAM J. Appl. Math. 58, 245-256 (1998) · Zbl 0924.60036 · doi:10.1137/S003613999529589X
[20] Xie, W.C.: Moment Lyapunov exponents of a two-dimensional system under real-noise excitation. J. Sound Vib. 239, 139-155 (2001) · doi:10.1006/jsvi.2000.3211
[21] Liu, X.B., Liew, K.M.: On the stability properties of a Van der Pol-Duffing oscillator that is driven by a real noise. J. Sound Vib. 285, 27-49 (2005) · Zbl 1237.34003 · doi:10.1016/j.jsv.2004.08.008
[22] Arnold, L., Papanicolaou, G., Wihstutz, V.: Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications. SIAM J. Appl. Math. 46, 427-450 (1986) · Zbl 0603.60051 · doi:10.1137/0146030
[23] Namachchivaya, N.S., Van Roessel, H.: Moment Lyapunov exponent and stochastic stability of two coupled oscillators driven by real noise. J. Appl. Mech. 68, 903 (2001) · Zbl 1110.74599 · doi:10.1115/1.1387021
[24] Kozic, P., Janevski, G., Pavlovic, R.: Moment Lyapunov exponents and stochastic stability of a double-beam system under compressive axial loading. Int. J. Solids Struct. 47, 1435-1442 (2010) · Zbl 1193.74062 · doi:10.1016/j.ijsolstr.2010.02.005
[25] Hu, D., Huang, Y., Liu, X.: Moment Lyapunov exponent and stochastic stability of binary airfoil driven by non-Gaussian colored noise. Nonlinear Dyn. 70, 1847-1859 (2012) · Zbl 1268.93146 · doi:10.1007/s11071-012-0577-x
[26] Liew, K.M., Liu, X.B.: The maximal Lyapunov exponent for a three-dimensional stochastic system. J. Appl. Mech. 71, 677-690 (2004) · Zbl 1111.74518 · doi:10.1115/1.1782648
[27] Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press, San Diego (1981) · Zbl 0469.60001
[28] Roy, R.V.: Stochastic averaging of oscillators excited by colored Gaussian processes. Int. J. Non-Linear Mech. 29, 463-475 (1994) · Zbl 0812.70018 · doi:10.1016/0020-7462(94)90015-9
[29] Liberzon, D., Brockett, R.W.: Spectral analysis of Fokker-Planck and related operators arising from linear stochastic differential equations. SIAM J. Control Optim. 38, 1453-1467 (2000) · Zbl 0964.35106 · doi:10.1137/S0363012998338193
[30] Zhao, L., Yang, Z.: Chaotic motions of an airfoil with non-linear stiffness in incompressible flow. J. Sound Vib. 138, 245-254 (1990) · Zbl 1235.74377 · doi:10.1016/0022-460X(90)90541-7
[31] Liu, J.K., Zhao, L.C.: Bifurcation analysis of airfoils in incompressible flow. J. Sound Vib. 154, 117-124 (1992) · Zbl 0922.76215 · doi:10.1016/0022-460X(92)90407-O
[32] Lin, Y.K., Cai, G.Q.: Probabilistic Structural Dynamics: Advanced Theory and Applications. McGraw-Hill, New York (2004)
[33] Wedig, W., Lyapunov exponent of stochastic systems and related bifurcation problems, 315-327 (1988)
[34] Li, S.; Liu, X.; Zhu, W. Q. (ed.); Lin, Y. K. (ed.); Cai, G. Q. (ed.), Moment Lyapunov exponent for a three dimensional stochastic system, 191-200 (2011), Berlin · Zbl 1242.34105 · doi:10.1007/978-94-007-0732-0_19
[35] Rößler, A.: Runge-Kutta methods for Itô stochastic differential equations with scalar noise. BIT Numer. Math. 46, 97-110 (2006) · Zbl 1091.65004 · doi:10.1007/s10543-005-0039-7
[36] Xie, W. C.; Huang, Q., On the Monte Carlo simulation of moment Lyapunov exponents, 627-636 (2006) · doi:10.1007/1-4020-4891-2_53
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.