×

A remapping-free, efficient Riemann-solvers based, ALE method for multi-material fluids with general EOS. (English) Zbl 1365.76166

Summary: Based on an efficient Riemann solver, a remapping-free ALE method (RALE) for multi-material fluids with general equations of state is proposed. The basic idea of constructing the RALE is to couple the Lagrangian method with a remapping-free ALE-type method. In order to keep the sharpness of a material interface, the Lagrangian formulation is employed for tracking the material interface, where the Lagrangian velocity of nodes and Lagrangian fluxes are designed. In single material regions, the numerical fluxes are constructed on moving meshes which move nodes to the regions with large gradients to increase the numerical accuracy, and the explicit remapping stage is avoided because of the new discrete scheme. The inverse Hermite interpolation argument is employed in solving the Riemann problem with general EOS, consequently, reducing iteration steps greatly and resulting in an efficient and robust Riemann solver. A number of numerical examples are presented.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput Meth Appl Mech Eng, 99, 235-394 (1992) · Zbl 0763.73052
[2] Lax, P. D.; Liu, X. D., Solutions of two-dimensional Riemann problem of gas dynamical by positive schemes, SIAM J Sci Comput, 19, 319-340 (1998) · Zbl 0952.76060
[3] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics (1999), Springer · Zbl 0923.76004
[4] Wilkins, M. L., Use of artificial viscosity in multidimensional fluid dynamic calculations, J Comput Phys, 36, 281-302 (1980) · Zbl 0436.76040
[5] Caramana, E. J.; Rousculp, C. L.; Burton, D. E., A compatible, energy and symmetry preserving Lagrangian hydrodynamics algorithm in three dimension Cartesian geometry, J Comput Phys, 157, 89-119 (2000) · Zbl 0961.76049
[6] Maire, P.-H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centred Lagrangian scheme for compressible flow problems, SIAM J Sci Comput, 29, 1781-1824 (2007) · Zbl 1251.76028
[7] Maire, P.-H., A high order cell-centered Lagrangian scheme for two dimensional compressible fluid flows on unstructured meshes, J Comput Phys, 228, 2391-2425 (2009) · Zbl 1156.76434
[8] Maire, P.-H., A high order one step subcell force based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Comput Fluids, 64, 1, 341-347 (2011) · Zbl 1433.76137
[9] Maire, P.-H., A unified subcell force based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Int J Numer Meth Fluids, 65, 11, 1281-1294 (2011) · Zbl 1429.76089
[10] Hirt, C. W.; Amsden, A.; Cook, J. L., An arbitrary Lagrangian Eulerian computing method for all flow speed, J Comput Phys, 14, 227-253 (1974) · Zbl 0292.76018
[11] Morrel, J. M.; Sweby, P. K.; Barlow, A., A cell by cell anisotropic adaptive mesh ALE scheme for the numerical solution of the Euler equations, J Comput Phys, 221, 1152-1180 (2007) · Zbl 1310.76096
[12] Loubere, R.; Maire, P.-H.; Shashkov, M.; Breil, G.; Galera, S., A reconnection based arbitrary Lagrangian Eulerian methods, J Comput Phys, 229, 4724-4761 (2010) · Zbl 1305.76067
[13] Caramana, E. J.; Burton, D. E.; Shashkov, M. J.; Whalen, P. P., The construction of compatible hydrodynamics algorithms utilizing conservation of total energy, J Comput Phys, 146, 227-262 (1998) · Zbl 0931.76080
[14] Luo, H.; Baum, J. D.; Lohner, R., On the computation of multimaterial flows using ALE formulation, J Comput Phys, 194, 304-328 (2004) · Zbl 1136.76401
[15] Maire, P.-H.; Breil, J.; Galera, S., A cell-centered arbitrary Lagrangian-Eulerian method, Int J Numer Meth Fluids, 56, 1161-1166 (2010) · Zbl 1384.76044
[16] Barlow, A. J., A compatible finite element multimaterial ALE hydrodynamic algorithm, Int J Numer Meth Fluids, 56, 953-964 (2008) · Zbl 1169.76030
[18] Tang, H. Z.; Tang, T., Adaptive mesh methods for one-and two-dimensional hyperbolic conservation laws, SIAM J Numer Anal, 41, 487-515 (2003) · Zbl 1052.65079
[19] Cao, W. M.; Huang, W. Z.; Russell, R. D., An \(r\)-adaptive finite element method based upon moving mesh PDEs, J Comput Phys, 149, 221-244 (1999) · Zbl 0923.65062
[20] Harten, A.; Hyman, J. M., Self adjoint mesh methods for one dimension conservation laws, J Comput Phys, 50, 235-269 (1983) · Zbl 0565.65049
[21] Azarenok, B. N.; Ivanenko, S. A.; Tang, T., Adaptive mesh redistribution method based on Godunov scheme, Commun Math Sci, 1, 152-179 (2003) · Zbl 1084.65089
[22] Azarenok, B. N.; Tang, T., Second order Godunov-type scheme for reactive flow calculations on moving meshes, J Comput Phys, 206, 48-80 (2005) · Zbl 1087.76076
[23] Ni, G. X.; Jiang, S.; Xu, K., Remapping-free ALE-type kinetic method for flow computations, J Comput Phys, 228, 3154-3171 (2009) · Zbl 1282.76155
[24] Glimm, J.; Li, X.; Liu, Y.; Xu, Z.; Zhao, N., Conservative front tracking with improved accuracy, SIAM J Numer Anal, 41, 1926-1947 (2003) · Zbl 1053.35093
[25] Galera, S.; Maire, P.-H.; Breil, J., A two dimensional unstructured cell centered multimaterial ALE scheme using VOF interface reconstruction, J Comput Phys, 229, 5755-5787 (2010) · Zbl 1346.76105
[26] Anbarlooei, H. R.; Mazaheri, K., Moment of fluid interface reconstruction method in multimaterial arbitrary Lagrangian-Eulerian algorithms, Comput Meth Appl Mech Eng, 198, 3782-3794 (2009) · Zbl 1230.76038
[27] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculation: a quasi conservative approach, J Comput Phys, 125, 150-160 (1996) · Zbl 0847.76060
[28] Karni, S., Multicomponent flow calculations by a consistent primitive algorithm, J Comput Phys, 112, 31-43 (1994) · Zbl 0811.76044
[29] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non oscillatory Euler approach to interfaces in multimaterial flows (the Ghost fluid method), J Comput Phys, 152, 457-492 (1999) · Zbl 0957.76052
[30] Liu, T. G.; Khoo, B. C.; Yeo, K. S., Ghost fluid method for strong shock impacting on material interface, J Comput Phys, 190, 651-681 (2003) · Zbl 1076.76592
[31] Jiang, S.; Ni, G. X., A \(γ\)-model BGK scheme for compressible multifluids, Int J Numer Meth Fluids, 46, 163-182 (2004) · Zbl 1103.76359
[32] Jiang, S.; Ni, G. X., An efficient \(γ\)-model BGK scheme for multicomponent flows on unstructured meshes, AMS Comtem Math, 466, 53-72 (2008) · Zbl 1306.76030
[33] Knupp, P.; Margolin, L. G.; Shashkov, M., Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods, J Comput Phys, 176, 93-128 (2002) · Zbl 1120.76340
[34] Knupp, P.; Steinberg, S., Fundamentals of grid generation (1993), CRC Press
[35] Prokopov, G. P., Solving a problem of discontinuity disintegration for porous and continuous media with binomial equations of state, Tech Codes Numer Solut Math Phys Problems, 2, 10, 32-40 (1982)
[36] Dukowicz, J. K.; Meltz, B. J.A., Vorticity errors in multidimensional Lagrangian codes, J Comput Phys, 99, 115-134 (1992) · Zbl 0743.76058
[37] Dukowicz, J. K.; Cline, M. C.; Addessio, F. S., A general topology method, J Comput Phys, 82, 29-63 (1989) · Zbl 0665.76032
[38] Shyue, K. M., A efficient shock capturing algorithm for compressible multicomponent problems, J Comput Phys, 142, 208-242 (1998) · Zbl 0934.76062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.