×

Second-order Godunov-type scheme for reactive flow calculations on moving meshes. (English) Zbl 1087.76076

Summary: The method of calculating the system of gas dynamics equations coupled with the chemical reaction equation is considered. The flow parameters are updated in whole without splitting the system into a hydrodynamical part and an ODE part. The numerical algorithm is based on the Godunov’s scheme on deforming meshes with some modification to increase the scheme-order in time and space. The variational approach is applied to generate the moving adaptive mesh. At every time step the functional of smoothness, written on the graph of the control function, is minimized. The grid-lines are condensed in the vicinity of the main solution singularities, e.g., precursor shock, fire zones, intensive transverse shocks, and slip lines, which allows resolving a fine structure of the reaction domain. The numerical examples relating to the Chapman-Jouguet detonation and unstable overdriven detonation are considered in both one and two space dimensions.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
80M20 Finite difference methods applied to problems in thermodynamics and heat transfer
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76L05 Shock waves and blast waves in fluid mechanics
76N15 Gas dynamics (general theory)
76V05 Reaction effects in flows
Full Text: DOI

References:

[1] Kireeva, I. L.; Pliner, L. A., (Alalykin, G. B.; Godunov, S. K., Solution of One-Dimensional Problems in Gas Dynamics on Moving Meshes (1970), Nauka Press: Nauka Press Moscow)
[2] Azarenok, B. N., Realization of a second-order Godunov’s scheme, Comput. Meth. Appl. Mech. Eng., 189, 1031-1052 (2000) · Zbl 0991.76046
[3] Azarenok, B. N.; Ivanenko, S. A., Application of moving adaptive grids for numerical solution of nonstationary problems in gas dynamics, Int. J. Numer. Meth. Fluids, 39, 1, 1-22 (2002) · Zbl 1057.76038
[4] Azarenok, B. N., Variational barrier method of adaptive grid generation in hyperbolic problems of gas dynamics, SIAM J. Numer. Anal., 40, 2, 651-682 (2002) · Zbl 1075.76051
[5] Azarenok, B. N.; Ivanenko, S. A.; Tang, T., Adaptive mesh redistribution method based on Godunov’s scheme, Commun. Math. Sci., 1, 1, 152-179 (2003) · Zbl 1084.65089
[6] Bao, W.; Jin, S., The random projection method for hyperbolic systems with stiff reaction terms, J. Comput. Phys., 163, 216-248 (2000) · Zbl 0966.65073
[7] Ben-Artzi, M., The generalized Riemann problem for reactive flows, J. Comput. Phys., 81, 70-101 (1989) · Zbl 0668.76080
[8] Bourlioux, A.; Majda, A. J.; Roytburd, V., Theoretical and numerical structure for unstable one-dimensional detonations, SIAM J. Appl. Math., 51, 2, 303-343 (1991) · Zbl 0731.76076
[9] Bourlioux, A.; Majda, A. J., Theoretical and numerical structure for unstable two-dimensional detonations, Combust. Flame, 90, 211-229 (1992)
[10] Brackbill, J. U.; Saltzman, J. S., Adaptive zoning for singular problems in two dimensions, J. Comput. Phys., 46, 342-368 (1982) · Zbl 0489.76007
[11] Cao, W. M.; Huang, W. Z.; Russel, R. D., An \(r\)-adaptive finite element method based upon moving mesh PDEs, J. Comput. Phys., 149, 221-244 (1999) · Zbl 0923.65062
[12] Casper, J.; Carpenter, M. H., Computational considerations for the simulation of shock-induced sound, SIAM J. Sci. Comput., 19, 3, 813-828 (1998) · Zbl 0918.76045
[13] Charakhch’yan, A. A.; Ivanenko, S. A., Curvilinear grids of convex quadrilaterals, USSR Comput. Math. Math. Phys., 28, 2, 126-133 (1988) · Zbl 0671.65095
[14] Charakhch’yan, A. A.; Ivanenko, S. A., A variational form of the Winslow grid generator, J. Comput. Phys., 136, 385-398 (1997) · Zbl 0887.65118
[15] V.A. Cherkashin, A.V. Zabrodin, Method of numerical modeling the detonation wave, Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Internal Report, 1974; V.A. Cherkashin, A.V. Zabrodin, Method of numerical modeling the detonation wave, Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Internal Report, 1974
[16] Chorin, A. J., Random choice solution of hyperbolic systems, J. Comput. Phys., 22, 517-531 (1976) · Zbl 0354.65047
[17] Colella, P.; Majda, A.; Roytburd, V., Theoretical and numerical structure for reacting shock waves, SIAM J. Sci. Stat. Comput., 7, 1059-1080 (1986) · Zbl 0633.76060
[18] Courant, R.; Friedrichs, K. O., Supersonic Flow and Shock Waves (1985), Springer: Springer Berlin · Zbl 0365.76001
[19] Crandall, M. G.; Majda, A., The method of fractional steps for conservation laws, Numer. Math., 34, 285-314 (1980) · Zbl 0438.65076
[20] Deryugin, Yu. N.; Kopyshev, V. P.; Tikhomirov, B. P., On detonation calculation by Forest Fire model using Godunov’s method, Questions of Atomic Science and Technique, 1, 48-52 (1990)
[21] Dvinsky, A. S., Adaptive grid generation from harmonic maps on Riemannian manifolds, J. Comput. Phys., 95, 450-476 (1991) · Zbl 0733.65074
[22] Engquist, B.; Sjögreen, B., The convergence rate of finite difference schemes in the presence of shocks, SIAM J. Numer. Anal., 35, 6, 2464-2485 (1998) · Zbl 0922.76254
[23] Erpenbeck, J. J., Stability of idealized one-reaction detonations, Phys. Fluids, 7, 684-696 (1964) · Zbl 0123.42901
[24] Farrell, F. T.; Jones, L. E., Some non-homeomorphic harmonic homotopy equivalences, Bull. London Math. Soc., 28, 177-182 (1996) · Zbl 0858.53033
[25] Fickett, W.; Wood, W. W., Flow calculations for pulsating one-dimensional detonations, Phys. Fluids, 9, 903-916 (1966)
[26] Fickett, W.; Davis, W. C., Detonation (1979), University of California Press: University of California Press Berkeley, CA
[27] Fortov, V. E.; Goel, B.; Munz, C. D.; Ni, A. L.; Shutov, A. V.; Vorobiev, O. Yu., Numerical simulation of nonstationary fronts and interfaces by the Godunov method in moving grids, Nucl. Sci. Eng., 123, 169-189 (1996)
[28] Helzel, C.; LeVeque, R. J.; Warneke, G., A modified fractional step method for the accurate approximation of detonation waves, SIAM J. Sci. Comput., 22, 4, 1489-1510 (2000) · Zbl 0983.65105
[29] Hirt, C. W.; Amsden, A. A.; Cook, J. L., An arbitrary Lagrangian-Eulerian computing method for all speeds, J. Comput. Phys., 14, 227 (1974) · Zbl 0292.76018
[30] Hwang, P.; Fedkiw, R.; Merriman, B.; Karagozian, A. R.; Osher, S. J., Numerical resolution of pulsating detonation waves, Combust. Theory Model., 4, 3, 217-240 (2000) · Zbl 0987.76066
[31] Godunov, S. K.; Prokopov, G. P., On computation of conformal transformations and construction of difference meshes, Zh. Vychisl. Mat. Mat. Fiz., 7, 1031-1059 (1967) · Zbl 0202.16202
[32] A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, G.P. Prokopov, in: S.K. Godunov (Ed.), Numerical Solution of Multi-Dimensional Problems in Gas Dynamics, Nauka Press (Moscow, 1976) (French translation: Résolution Numérique des Problémes Multidimensionnels de la Dynamique des Gaz, Mir, Moscou, 1979); A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, G.P. Prokopov, in: S.K. Godunov (Ed.), Numerical Solution of Multi-Dimensional Problems in Gas Dynamics, Nauka Press (Moscow, 1976) (French translation: Résolution Numérique des Problémes Multidimensionnels de la Dynamique des Gaz, Mir, Moscou, 1979)
[33] Godunov, S. K., Equations of Mathematical Physics (1979), Nauka Press: Nauka Press Moscow · Zbl 0447.22011
[34] Godunov, S. K., Reminiscenses about difference schemes, J. Comput. Phys., 153, 6-25 (1999) · Zbl 0936.65106
[35] Ivanenko, S. A., Harmonic mappings, Handbook of Grid Generation (1999), CRC Press: CRC Press Boca Raton, FL, (Chapter 8)
[36] Khairullina, O. B.; Sidorov, A. F.; Ushakova, O. V., Variational methods of construction of optimal grids, (Thompson, J. F.; etal., Handbook of Grid Generation (1999), CRC Press: CRC Press Boca Raton, FL), (Chapter 36) · Zbl 0923.76271
[37] Kulikovskii, A. G.; Pogorelov, N. V.; Semenov, A. Yu., Mathematical aspects of numerical solution of hyperbolic systems, Monographs and Surveys in Pure and Applied Mathematics, vol. 188 (2001), Chapman & Hall/CRC Press: Chapman & Hall/CRC Press Boca Raton, FL · Zbl 0965.35001
[38] Lee, H. I.; Stewart, D. S., Calculation of linear detonation instability: one-dimensional instability of plane detonation, J. Fluid Mech., 216, 103-132 (1990) · Zbl 0698.76120
[39] van Leer, B., Towards the ultimate conservative difference scheme. V. A second order sequel to Godunov’s methods, J. Comput. Phys., 32, 101-136 (1979) · Zbl 1364.65223
[40] Liseikin, V. D., On generation of regular grids on \(n\)-dimensional surfaces, USSR Comput. Maths. Math. Phys., 31, 11, 47-57 (1991) · Zbl 0785.65108
[41] Ostapenko, V. V., Convergence of finite-difference schemes behind a shock front, Comput. Math. Math. Phys., 37, 10, 1161-1172 (1997) · Zbl 1122.76355
[42] Oran, E.; Boris, J. P., Numerical Simulation of Reactive Flow (1987), Elsevier: Elsevier New York · Zbl 0875.76678
[43] Papalexandris, M. V.; Leonard, A.; Dimotakis, P. E., Unsplit schemes for hyperbolic conservation laws with source terms in one space dimension, J. Comput. Phys., 134, 31-61 (1997) · Zbl 0880.65074
[44] Pember, R. B., Numerical methods for hyperbolic conservation laws with stiff relaxation I. Spurious solutions, SIAM J. Appl. Math., 53, 1293-1330 (1993) · Zbl 0787.65062
[45] Quirk, J. J., Godunov-type schemfes applied to detonation flows, (Buckmaster, J., Combustion in High-Speed Flows (1994), Kluwer: Kluwer Dordrecht), 575-596
[46] Rodionov, A. V., Increase of accuracy of Godunov’s scheme, USSR Comput. Math. Math. Phys., 27, 12, 1853-1860 (1987) · Zbl 0663.76056
[47] Rozhdestvenskii, B. L.; Yanenko, N. N., Systems of quasilinear equations and their applications to gas dynamics, Ameriacan Mathematical Society of Translational Mathematical Monographs, vol. 55 (1983), AMS: AMS Providence, RI · Zbl 0177.14001
[48] Schoen, R.; Yau, S. T., On univalent harmonic maps between surfaces, Invent. Math., 44, 265-278 (1978) · Zbl 0388.58005
[49] Sharpe, G. J., Linear stability of idealized detonations, Proc. Roy. Soc. Lond. A, 453, 2603-2625 (1997) · Zbl 0898.76041
[50] Short, M.; Stewart, D. S., Cellular detonation stability, part 1. A normal-mode linear analysis, J. Fluid Mech., 368, 229-262 (1998) · Zbl 0926.76051
[51] Tang, H. Z.; Tang, T., Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal., 41, 487-515 (2003) · Zbl 1052.65079
[52] Tang, T.; Teng, Z.-H., Error bounds for fractional step methods for conservation laws with source terms, SIAM J. Numer. Anal., 32, 110-127 (1995) · Zbl 0860.65087
[53] Tang, T., Convergence analysis for operator splitting methods to conservation laws with stiff source terms, SIAM J. Numer. Anal., 35, 1939-1968 (1998) · Zbl 0921.35103
[54] Ton, V. T., Improved shock-capturing methods for multicomponent and reacting flows, J. Comput. Phys., 128, 237-253 (1996) · Zbl 0860.76060
[55] Ushakova, O. V., Conditions of nondegeneracy of three-dimensional cells. A formula of a volume of cells, SIAM J. Sci. Comput., 23, 4, 1273-1289 (2001) · Zbl 1022.65133
[56] N.N. Yanenko, N.T. Danaev, V.D. Liseikin, On variational method to cunstructing meshes, Chislen. Metody Mekhan. Sploshn. Sredy, 8, No, 4, Novosibirsk, 1977, pp. 157-163; N.N. Yanenko, N.T. Danaev, V.D. Liseikin, On variational method to cunstructing meshes, Chislen. Metody Mekhan. Sploshn. Sredy, 8, No, 4, Novosibirsk, 1977, pp. 157-163
[57] Weyl, H., Shock waves in arbitrary fluids, Commun. Pure Appl. Math., 2, 2-3, 103-122 (1949) · Zbl 0035.42004
[58] Winslow, A., Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle mesh, J. Comput. Phys., 1, 149-172 (1966) · Zbl 0254.65069
[59] Ya.B. Zeldovich, S.A.Kompaneets, Theoriya Detonatsii (Theory of Detonations), Gostekhizdat (Moscow, 1955) (English translation: Academic Press , New York, 1960); Ya.B. Zeldovich, S.A.Kompaneets, Theoriya Detonatsii (Theory of Detonations), Gostekhizdat (Moscow, 1955) (English translation: Academic Press , New York, 1960)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.