×

Kähler-Einstein metrics on group compactifications. (English) Zbl 1364.32017

The author considers the existence of Kähler-Einstein metrics on a natural generalization of toric Fano manifolds: the bi-equivariant Fano compactifications of complex connected reductive groups. More precisely, given such a group \(G\), he considers the Fano manifolds \(X\) which admit a \(G\times G\)-action with an open dense orbit isomorphic to \(G\) as a \(G\times G\)-homogeneous space under left and right translations. He calls these manifolds group compactifications. As in the toric case, a polytope \(P^+\) is associated to such a manifold, that encodes the information about the boundary \(X\backslash G\) and the anticanonical line bundle. The main theorem is the following: A Fano compactification of \(G\) admits a Kähler-Einstein metric if and only if \(\text{bar}_{DH}(P^+)\in 2\rho+\Xi\). Here \(\text{bar}_{DH}(P^+)\) is the barycenter of \(P^+\) and \(\Xi\) the relative interior of the cone generated by \(\Phi^+\), a root system of \(G\) (\(\rho\) is half the sum of positive roots).

MSC:

32Q25 Calabi-Yau theory (complex-analytic aspects)
53C55 Global differential geometry of Hermitian and Kählerian manifolds
14J45 Fano varieties

References:

[1] Alexeev, V., Brion, M.: Stable reductive varieties. II. Projective case. Adv. Math. 184(2), 380-408 (2004) · Zbl 1080.14017
[2] Abreu, M.: Kähler geometry of toric varieties and extremal metrics. Int. J. Math. 9(6), 641-651 (1998) · Zbl 0932.53043 · doi:10.1142/S0129167X98000282
[3] Alexeev, V., Katzarkov, L.: On \[KK\]-stability of reductive varieties. Geom. Funct. Anal. 15(2), 297-310 (2005) · Zbl 1122.32016 · doi:10.1007/s00039-005-0507-x
[4] H. Azad and J.-J. Loeb. Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces. Indag. Math. (N.S.), 3(4):365-375, 1992 · Zbl 0777.32008
[5] T. Aubin. Équations du type Monge-Ampère sur les variétés kähleriennes compactes. C. R. Acad. Sci. Paris Sér. A-B, 283(3):Aiii, A119-A121, 1976 · Zbl 0333.53040
[6] Bielawski, R.: Prescribing Ricci curvature on complexified symmetric spaces. Math. Res. Lett. 11(4), 435-441 (2004) · Zbl 1066.53098 · doi:10.4310/MRL.2004.v11.n4.a3
[7] Brion, M., Kumar, S.: Frobenius splitting methods in geometry and representation theory. Progress in Mathematics, vol. 231. Birkhäuser Boston Inc, Boston, MA (2005) · Zbl 1072.14066
[8] Blanchard, A.: Sur les variétés analytiques complexes. Ann. Sci. Ecole Norm. Sup. 3(73), 157-202 (1956) · Zbl 0073.37503
[9] A. Borel. Linear algebraic groups, volume 126 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991 · Zbl 0726.20030
[10] Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math. J. 58(2), 397-424 (1989) · Zbl 0701.14052 · doi:10.1215/S0012-7094-89-05818-3
[11] Brion, M.: The total coordinate ring of a wonderful variety. J. Algebra 313(1), 61-99 (2007) · Zbl 1123.14024 · doi:10.1016/j.jalgebra.2006.12.022
[12] Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Amer. Math. Soc. 28(1), 183-197 (2015) · Zbl 1312.53096 · doi:10.1090/S0894-0347-2014-00799-2
[13] Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than \[2\pi 2\] π. J. Amer. Math. Soc. 28(1), 199-234 (2015) · Zbl 1312.53097 · doi:10.1090/S0894-0347-2014-00800-6
[14] Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches \[2\pi 2\] π and completion of the main proof. J. Amer. Math. Soc. 28(1), 235-278 (2015) · Zbl 1311.53059 · doi:10.1090/S0894-0347-2014-00801-8
[15] X. Chen, S. Sun, B. Wang. Kähler-Ricci flow, Kähler-Einstein metric and K-stability. arXiv:1508.04397 · Zbl 1404.53058
[16] C. De Concini and C. Procesi. Complete symmetric varieties. In Invariant theory (Montecatini, 1982), volume 996 of Lecture Notes in Math., pages 1-44. Springer, Berlin, 1983 · Zbl 0581.14041
[17] T. Delcroix. K-stability of Fano spherical varieties. arXiv:1608.01852 · Zbl 1473.14098
[18] T. Delcroix. Log canonical thresholds on group compactifications. arXiv:1510.05079v1 · Zbl 1393.14050
[19] T. Delcroix. Métriques de Kähler-Einstein sur les compactifications de groupes. Theses, Université Grenoble Alpes, October 2015. · Zbl 0073.37503
[20] S. K. Donaldson. Kähler geometry on toric manifolds, and some other manifolds with large symmetry. In Handbook of geometric analysis. No. 1, volume 7 of Adv. Lect. Math. (ALM), pages 29-75. Int. Press, Somerville, MA, 2008 · Zbl 1161.53066
[21] T. Darvas and Y. Rubinstein. Tian’s properness conjectures and Finsler geometry of the space of Kähler metrics. arXiv:1506.07129v2 · Zbl 1386.32021
[22] V. Datar and G. Székelyhidi. Kähler-Einstein metrics along the smooth continuity method. arXiv:1506.07495 · Zbl 1359.32019
[23] W. Fulton. Introduction to toric varieties, volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry · Zbl 0813.14039
[24] Gagliardi, G., Hofscheier, J.: Gorenstein spherical Fano varieties. Geom. Dedicata 178, 111-133 (2015) · Zbl 1349.14165 · doi:10.1007/s10711-015-0047-y
[25] Gandini, J., Ruzzi, A.: Normality and smoothness of simple linear group compactifications. Math. Z. 275(1-2), 307-329 (2013) · Zbl 1304.14060 · doi:10.1007/s00209-012-1136-3
[26] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 80 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978 · Zbl 0451.53038
[27] Hochschild, G.: The structure of Lie groups. Holden-Day Inc, San Francisco-London-Amsterdam (1965) · Zbl 0131.02702
[28] John, F.: Extremum problems with inequalities as subsidiary conditions. In Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pages 187-204. Interscience Publishers Inc., New York, N. Y. (1948) · Zbl 0034.10503
[29] Kazarnovskiĭ, B.Y.: Newton polyhedra and Bezout’s formula for matrix functions of finite-dimensional representations. Funktsional. Anal. i Prilozhen. 21(4), 73-74 (1987) · Zbl 0662.22014
[30] A. W. Knapp. Lie groups beyond an introduction, volume 140 of Progress in Mathematics. Birkhäuser Boston Inc, Boston, MA, second edition, 2002 · Zbl 1075.22501
[31] Li, C.: Greatest lower bounds on Ricci curvature for toric Fano manifolds. Adv. Math. 226(6), 4921-4932 (2011) · Zbl 1222.14090 · doi:10.1016/j.aim.2010.12.023
[32] Mabuchi, T.: Einstein-K ähler forms, Futaki invariants and convex geometry on toric Fano varieties. Osaka J. Math. 24(4), 705-737 (1987) · Zbl 0661.53032
[33] Matsushima, Y.: Sur la structure du groupe d’homéomorphismes analytiques d’une certaine variété kählérienne. Nagoya Math. J. 11, 145-150 (1957) · Zbl 0091.34803 · doi:10.1017/S0027763000002026
[34] T. Oda. Convex bodies and algebraic geometry, volume 15 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1988. An introduction to the theory of toric varieties, Translated from the Japanese · Zbl 0628.52002
[35] Perrin, N.: On the geometry of spherical varieties. Transform. Groups 19(1), 171-223 (2014) · Zbl 1309.14001 · doi:10.1007/s00031-014-9254-0
[36] Pezzini, G., No article title, Automorphisms of wonderful varieties. Transform Groups, 14, 677-694 (2009) · Zbl 1180.14050 · doi:10.1007/s00031-009-9063-z
[37] Podestà, F., Spiro, A.: Kähler-Ricci solitons on homogeneous toric bundles. J. Reine Angew. Math. 642, 109-127 (2010) · Zbl 1210.14057
[38] Ruzzi, A.: Fano symmetric varieties with low rank. Publ. Res. Inst. Math. Sci. 48(2), 235-278 (2012) · Zbl 1245.14042 · doi:10.2977/PRIMS/69
[39] Y. T. Siu. The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group. Ann. of Math. (2), 127(3):585-627, 1988 · Zbl 0651.53035
[40] Székelyhidi, G.: Greatest lower bounds on the Ricci curvature of Fano manifolds. Compos. Math. 147(1), 319-331 (2011) · Zbl 1222.32046 · doi:10.1112/S0010437X10004938
[41] Tian, G.: On Kähler-Einstein metrics on certain Kähler manifolds with \[C_1(M) > 0\] C1(M)>0. Invent. Math. 89(2), 225-246 (1987) · Zbl 0599.53046 · doi:10.1007/BF01389077
[42] Tian, G.: K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math. 68(7), 1085-1156 (2015) · Zbl 1318.14038 · doi:10.1002/cpa.21578
[43] D. A. Timashev. Homogeneous spaces and equivariant embeddings, volume 138 of Encyclopaedia of Mathematical Sciences. Springer, Heidelberg, 2011. Invariant Theory and Algebraic Transformation Groups, 8 · Zbl 1237.14057
[44] Wang, X.-J., Zhu, X.: Kähler-Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188(1), 87-103 (2004) · Zbl 1086.53067 · doi:10.1016/j.aim.2003.09.009
[45] Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31(3), 339-411 (1978) · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
[46] Zhang, X., Zhang, X.: Generalized Kähler-Einstein metrics and energy functionals. Canad. J. Math. 66(6), 1413-1435 (2014) · Zbl 1323.53082 · doi:10.4153/CJM-2013-034-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.