×

Gorenstein spherical Fano varieties. (English) Zbl 1349.14165

Summary: We obtain a combinatorial description of Gorenstein spherical Fano varieties in terms of certain polytopes, generalizing the combinatorial description of Gorenstein toric Fano varieties by reflexive polytopes and its extension to Gorenstein horospherical Fano varieties due to Pasquier. Using this description, we show that the rank of the Picard group of an arbitrary \(d\)-dimensional \(\mathbb Q\)-factorial Gorenstein spherical Fano variety is bounded by \(2d\). This paper also contains an overview of the description of the natural representative of the anticanonical divisor class of a spherical variety due to Brion.

MSC:

14M27 Compactifications; symmetric and spherical varieties
14J45 Fano varieties
14L30 Group actions on varieties or schemes (quotients)
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)

References:

[1] Alexeev, V., Brion, M.: Boundedness of spherical Fano varieties, The Fano Conference, pp. 69-80. Univ. Torino, Turin (2004) · Zbl 1087.14028
[2] Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3(3), 493-535 (1994) · Zbl 0829.14023
[3] Brion, M.: Groupe de Picard et nombres caractéristiques des variétés sphériques. Duke Math. J. 58(2), 397-424 (1989) · Zbl 0701.14052 · doi:10.1215/S0012-7094-89-05818-3
[4] Brion, M.: Vers une généralisation des espaces symétriques. J. Algebra 134(1), 115-143 (1990) · Zbl 0729.14038 · doi:10.1016/0021-8693(90)90214-9
[5] Brion, M.: Variétés sphériques et théorie de Mori. Duke Math. J. 72(2), 369-404 (1993) · Zbl 0821.14029 · doi:10.1215/S0012-7094-93-07213-4
[6] Brion, M.: Curves and Divisors in Spherical Varieties, Algebraic Groups and Lie Groups, pp. 21-34. Cambridge Univ. Press, Cambridge (1997) · Zbl 0883.14024
[7] Brion, M.: The total coordinate ring of a wonderful variety. J. Algebra 313(1), 61-99 (2007) · Zbl 1123.14024 · doi:10.1016/j.jalgebra.2006.12.022
[8] Casagrande, C.: The number of vertices of a Fano polytope. Ann. Inst. Fourier (Grenoble) 56(1), 121-130 (2006) · Zbl 1095.52005 · doi:10.5802/aif.2175
[9] Debarre, O.: Fano varieties, Higher Dimensional Varieties and Rational Points (Budapest, 2001). Springer, Berlin (2003)
[10] Demazure, M.: Une démonstration algébrique d’un théorème de Bott. Invent. Math. 5, 349-356 (1968) · Zbl 0204.54102 · doi:10.1007/BF01389781
[11] Demazure, M.: A very simple proof of Bott’s theorem. Invent. Math. 33(3), 271-272 (1976) · Zbl 0383.14017 · doi:10.1007/BF01404206
[12] Ewald, G.: Combinatorial Convexity and Algebraic Geometry, Graduate Texts in Mathematics, vol. 168. Springer, New York (1996) · Zbl 0869.52001 · doi:10.1007/978-1-4612-4044-0
[13] Foschi, A.: Variétés magnifiques et polytopes moment, Ph.D. thesis, Université de Grenoble I (1998)
[14] Fulton, W.: Introduction to Toric Varieties, Annals of Mathematics Studies. Princeton University Press, Princeton (1993) · Zbl 0813.14039
[15] Gagliardi, G., Hofscheier, J.: Homogeneous spherical data of orbits in spherical embeddings. Transform. Groups. (2015). doi:10.1007/s00031-014-9297-2 · Zbl 1332.14066
[16] Grünbaum, B.; Kaibel, V. (ed.); Klee, V. (ed.); Ziegler, GM (ed.), Graduate texts in mathematics (2003), New York · Zbl 1024.52001 · doi:10.1007/978-1-4613-0019-9
[17] Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis, Grundlehren Text Editions. Springer, Berlin (2001) · Zbl 0998.49001 · doi:10.1007/978-3-642-56468-0
[18] Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics. Springer, New York (1978). Second printing, revised · Zbl 0447.17001
[19] Knop, F., Kraft, H., Luna, D., Vust, T.: Local properties of algebraic group actions, Algebraische Transformationsgruppen und Invariantentheorie. DMV Sem. 13, 63-75 (1989) · Zbl 0722.14032
[20] Knop, F., Kraft, H., Vust, T.: The Picard group of a \[G\] G-variety, Algebraische Transformationsgruppen und Invariantentheorie. DMV Sem. 13, 77-87 (1989) · Zbl 0705.14005
[21] Knop, F.: The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (Madras), Manoj Prakashan, pp. 225-249 (1991) · Zbl 0812.20023
[22] Knop, F.: On the set of orbits for a Borel subgroup. Comment. Math. Helv. 70(2), 285-309 (1995) · Zbl 0828.22016 · doi:10.1007/BF02566009
[23] Knop, F.: Localization of spherical varieties. Algebra Number Theory 8(3), 703-728 (2014) · Zbl 1331.14051 · doi:10.2140/ant.2014.8.703
[24] Luna, D.: Grosses cellules pour les variétés sphériques, Algebraic groups and Lie groups. Austral. Math. Soc. Lect. Ser. 9, 267-280 (1997) · Zbl 0902.14037
[25] Luna, D.: Variétés sphériques de type \[A\] A. Publ. Math. Inst. Hautes Études Sci. 94, 161-226 (2001) · Zbl 1085.14039 · doi:10.1007/s10240-001-8194-0
[26] Luna, D., Vust, T.: Plongements d’espaces homogènes. Comment. Math. Helv. 58(2), 186-245 (1983) · Zbl 0545.14010 · doi:10.1007/BF02564633
[27] Mumford, D., Fogarty, J., Clare Kirwan, F.: Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn. Springer, Berlin (1994) · Zbl 0797.14004
[28] Pasquier, B.: Variétés horosphériques de Fano. Bull. Soc. Math. France 136(2), 195-225 (2008) · Zbl 1162.14030
[29] Rosenlicht, M.: Questions of rationality for solvable algebraic groups over nonperfect fields. Ann. Mat. Pura Appl. (4) 61, 97-120 (1963) · Zbl 0126.16901 · doi:10.1007/BF02412850
[30] Springer, T.A.: Linear Algebraic Groups, Modern Birkhäuser Classics, 2nd edn. Birkhäuser Boston Inc., Boston (2009)
[31] Timashev, D.A.: Homogeneous spaces and equivariant embeddings, Encyclopaedia of Mathematical Sciences, Invariant Theory and Algebraic Transformation Groups 8. Springer, Heidelberg (2011) · Zbl 1237.14057
[32] Wasserman, B.: Wonderful varieties of rank two. Transform. Groups 1(4), 375-403 (1996) · Zbl 0921.14031 · doi:10.1007/BF02549213
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.