×

Mixing properties of commuting nilmanifold automorphisms. (English) Zbl 1360.37010

Summary: We study mixing properties of commutative groups of automorphisms acting on compact nilmanifolds. Assuming that every non-trivial element acts ergodically, we prove that such actions are mixing of all orders. We further show exponential 2-mixing and 3-mixing. As an application we prove smooth cocycle rigidity for higher-rank abelian groups of nilmanifold automorphisms.

MSC:

37A25 Ergodicity, mixing, rates of mixing
22D40 Ergodic theory on groups
37A30 Ergodic theorems, spectral theory, Markov operators

References:

[1] Bombieri, E. & Gubler, W., Heights in Diophantine Geometry. New Mathematical Monographs, 4. Cambridge Univ. Press, Cambridge, 2006 · Zbl 1115.11034
[2] Corwin, L. J. & Greenleaf, F. P., Representations of Nilpotent Lie Groups and their Applications. Part I. Basic Theory and Examples. Cambridge Studies in Advanced Mathematics, 18. Cambridge Univ. Press, Cambridge, 1990 · Zbl 0704.22007
[3] Damjanović D.: Central extensions of simple Lie groups and rigidity of some abelian partially hyperbolic algebraic actions. J. Mod. Dyn. 1, 665-688 (2007) · Zbl 1139.37017 · doi:10.3934/jmd.2007.1.665
[4] Damjanović D., Damjanović D., Damjanović D.: Periodic cycle functionals and cocycle rigidity for certain partially hyperbolic \[{\mathbb{R}^k}\] Rk actions. Discrete Contin. Dyn. Syst. 13, 985-1005 (2005) · Zbl 1109.37029 · doi:10.3934/dcds.2005.13.985
[5] Damjanović, D. & Katok, A., Local rigidity of partially hyperbolic actions. II: The geometric method and restrictions of Weyl chamber flows on SL \[({n, \mathbb{R}}\] n,R)/Γ. Int. Math. Res. Not. IMRN, 2011 (2011), 4405-4430 · Zbl 1291.37027
[6] Einsiedler M., Ward T.: Asymptotic geometry of non-mixing sequences. Ergodic Theory Dynam. Systems 23, 75-85 (2003) · Zbl 1039.37001 · doi:10.1017/S0143385702000950
[7] Evertse J.-H., Schlickewei H.P., Schmidt W.M.: Linear equations in variables which lie in a multiplicative group. Ann. of Math. 155, 807-836 (2002) · Zbl 1026.11038 · doi:10.2307/3062133
[8] Fisher D., Kalinin B., Spatzier R.: Global rigidity of higher rank Anosov actions on tori and nilmanifolds. J. Amer. Math. Soc. 26, 167-198 (2013) · Zbl 1338.37040 · doi:10.1090/S0894-0347-2012-00751-6
[9] Gorodnik A., Spatzier R.: Exponential mixing of nilmanifold automorphisms. J. Anal. Math. 123, 355-396 (2014) · Zbl 1312.37007 · doi:10.1007/s11854-014-0024-7
[10] Green, B. & Tao, T., The quantitative behaviour of polynomial orbits on nilmanifolds. Ann. of Math., 175 (2012), 465-540; erratum in Ann. of Math., 179 (2014), 1175-1183 · Zbl 1251.37012
[11] Katok A., Spatzier R. J.: First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. Inst. Hautes Études Sci. Publ. Math. 79, 131-156 (1994) · Zbl 0819.58027 · doi:10.1007/BF02698888
[12] Katok A., Spatzier R.J.: Subelliptic estimates of polynomial differential operators and applications to rigidity of abelian actions. Math. Res. Lett. 1, 193-202 (1994) · Zbl 0836.57026 · doi:10.4310/MRL.1994.v1.n2.a7
[13] Ledrappier F.: Un champ markovien peut être d’entropie nulle et mélangeant. C. R. Acad. Sci. Paris Sér. A-B 287, A561-A563 (1978) · Zbl 0387.60084
[14] Lind D.A.: Dynamical properties of quasihyperbolic toral automorphisms. Ergodic Theory Dynam. Systems 2, 49-68 (1982) · Zbl 0507.58034 · doi:10.1017/S0143385700009573
[15] Miles R., Ward T.: A directional uniformity of periodic point distribution and mixing. Discrete Contin. Dyn. Syst. 30, 1181-1189 (2011) · Zbl 1219.37019 · doi:10.3934/dcds.2011.30.1181
[16] Mozes, S., Mixing of all orders of Lie groups actions. Invent. Math., 107 (1992), 235-241; erratum in Invent. Math., 119 (1995), 399 · Zbl 0783.28011
[17] Rauch J., Taylor M.: Regularity of functions smooth along foliations, and elliptic regularity. J. Funct. Anal. 225, 74-93 (2005) · Zbl 1073.35077 · doi:10.1016/j.jfa.2005.03.018
[18] Rodriguez Hertz F., Wang Z.: Global rigidity of higher rank abelian Anosov algebraic actions. Invent. Math., 198, 165-209 (2014) · Zbl 1312.37028 · doi:10.1007/s00222-014-0499-y
[19] Schlickewei H.P.: S-unit equations over number fields. Invent. Math. 102, 95-107 (1990) · Zbl 0711.11017 · doi:10.1007/BF01233421
[20] Schmidt K.: Mixing automorphisms of compact groups and a theorem by Kurt Mahler. Pacific J. Math. 137, 371-385 (1989) · Zbl 0678.22002 · doi:10.2140/pjm.1989.137.371
[21] Schmidt, K., Dynamical Systems of Algebraic Origin. Progress in Mathematics, 128. Birkhäuser, Basel, 1995 · Zbl 0833.28001
[22] Schmidt K., Ward T.: Mixing automorphisms of compact groups and a theorem of Schlickewei. Invent. Math. 111, 69-76 (1993) · Zbl 0824.28012 · doi:10.1007/BF01231280
[23] Starkov, A. N., Dynamical Systems on Homogeneous Spaces. Translations of Mathematical Monographs, 190. Amer. Math. Soc., Providence, RI, 2000 · Zbl 1039.37001
[24] Waldschmidt M.: Minorations de combinaisons linéaires de logarithmes de nombres algébriques. Canad. J. Math. 45, 176-224 (1993) · Zbl 0774.11036 · doi:10.4153/CJM-1993-010-1
[25] Wang Z.J.: Local rigidity of partially hyperbolic actions. J. Mod. Dyn. 4, 271-327 (2010) · Zbl 1205.37048 · doi:10.3934/jmd.2010.4.271
[26] Ward, T., Three results on mixing shapes. New York J. Math., 3A (1997/98), 1-10 · Zbl 0909.28015
[27] Ward, T., Mixing and tight polyhedra, in Dynamics & Stochastics, IMS Lecture Notes Monogr. Ser., 48, pp. 169-175. Inst. Math. Statist., Beachwood, OH, 2006 · Zbl 1167.37304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.