×

Global rigidity of higher rank abelian Anosov algebraic actions. (English) Zbl 1312.37028

The following main theorem is proved in the paper:
Suppose \(\alpha:\mathbb{Z}^r\curvearrowright M\) is a \(C^\infty\) action on a compact infra-nilmanifold \(M\), where \(r\geq 2\), and let \(\rho\) be its linearization.
Assume that there exists \(n_0\in\mathbb R^n\) such that \(\alpha(n_0)\) is an Anosov diffeomorphism, and that \(\rho\) has no rank-one factor. Then \(\alpha\) is conjugate to \(\rho\) by a \(C^\infty\) diffeomorphism.

MSC:

37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
37C15 Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems

References:

[1] de la Llave, R.: Remarks on Sobolev regularity in Anosov systems. Ergodic Theory Dynam. Syst. 21(4), 1139-1180 (2001) · Zbl 1055.37030
[2] Einsiedler, M., Fisher, T.: Differentiable rigidity for hyperbolic toral actions. Israel J. Math. 157, 347-377 (2007) · Zbl 1112.37022 · doi:10.1007/s11856-006-0016-0
[3] Farrell, F.T., Jones, L.E.: Anosov diffeomorphisms constructed from \[\pi_1\] π1 Diff \[(S^nSn)\]. Topology 17(3), 273-282 (1978) · Zbl 0407.58031 · doi:10.1016/0040-9383(78)90031-9
[4] Fisher, D., Kalinin, B., Spatzier, R.: Totally nonsymplectic Anosov actions on tori and nilmanifolds. Geom. Topol. 15(1), 191-216 (2011) · Zbl 1213.37043 · doi:10.2140/gt.2011.15.191
[5] Fisher, D., Kalinin, B., Spatzier, R.: Global rigidity of higher rank Anosov actions on tori and nilmanifolds, with an appendix by J. Davis. J. Am. Math. Soc. 26(1), 167-198 (2013) · Zbl 1338.37040 · doi:10.1090/S0894-0347-2012-00751-6
[6] Franks, J.: Anosov diffeomorphisms on tori. Trans. Am. Math. Soc. 145, 117-124 (1969) · Zbl 0191.21604 · doi:10.1090/S0002-9947-1969-0253352-7
[7] Gogolev, A.: Diffeomorphisms Hölder conjugate to Anosov diffeomor-phisms. Ergodic Theory Dynam. Syst. 30(2), 441-456 (2010) · Zbl 1185.37040 · doi:10.1017/S0143385709000169
[8] Gorodnik, A.: Open problems in dynamics and related fields. J. Mod. Dyn. 1(1), 1-35 (2007) · Zbl 1118.37002 · doi:10.3934/jmd.2007.1.1
[9] Gorodnik, A., Spatzier, R.: Mixing properties of \[\mathbb{Z}^k\] Zk-actions on nilmani-folds. (2013) (preprint) · Zbl 0785.22012
[10] Kalinin, B., Katok, A.: Invariant measures for actions of higher rank abelian groups, Smooth ergodic theory and its applications (Seattle: Proc. Sympos. Pure Math., vol. 69, Providence: Am. Math. Soc. 2001, pp. 593-637 (1999) · Zbl 0999.37016
[11] Kalinin, B., Sadovskaya, V.: Global rigidity for totally nonsymplectic Anosov \[\mathbb{Z}^k\] Zk actions. Geom. Topol. 10, 929-954 (2006). (electronic) · Zbl 1126.37015
[12] Kalinin, B., Sadovskaya, V.: On the classification of resonance-free Anosov \[\mathbb{Z}^k\] Zk actions. Michigan Math. J. 55(3), 651-670 (2007) · Zbl 1233.37013
[13] Kalinin, B., Spatzier, R.: On the classification of Cartan actions. Geom. Funct. Anal. 17(2), 468-490 (2007) · Zbl 1121.37026 · doi:10.1007/s00039-007-0602-2
[14] Katok, A., Katok, S., Schmidt, K.: Rigidity of measurable structure for \[\mathbb{Z}^d\] Zd-actions by automorphisms of a torus. Comment. Math. Helv. 77(4), 718-745 (2002) · Zbl 1035.37005
[15] Katok, A., Lewis, J.: Local rigidity for certain groups of toral automorphisms. Israel J. Math. 75(2-3), 203-241 (1991) · Zbl 0785.22012 · doi:10.1007/BF02776025
[16] Katok, A., Spatzier, R.J.: First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity. Inst. Hautes Etudes Sci. Publ. Math. 79, 131-156 (1994) [MR1307298 (96c:58132)] · Zbl 0819.58027
[17] Katok, A., Spatzier, R.J.: Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions. Tr. Mat. Inst. Steklova (Din. Sist. i Smezhnye Vopr.) 216, 292-319 (1997). [English transl., Proc. Steklov Inst. Math. 1(216), 287-314 (1997)] · Zbl 0938.37010
[18] Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension. Ann. Math. (2) 122(3), 540-574 (1985) · Zbl 1371.37012
[19] Malcev, A.I.: On a class of homogeneous spaces. Am. Math. Soc. Transl. 1951(39), 33 (1951) · Zbl 0404.17006
[20] Malyshev, F.M.: Decompositions of nilpotent Lie algebras. Math. Notes Acad. Sci. USSR 23(1), 17-18 (1978) · Zbl 0404.17006 · doi:10.1007/BF01104878
[21] Manñé, R.: Quasi-Anosov diffeomorphisms and hyperbolic manifolds. Trans. Am. Math. Soc. 229, 351-370 (1977) · Zbl 0356.58009 · doi:10.1090/S0002-9947-1977-0482849-4
[22] Manning, A.: There are no new Anosov diffeomorphisms on tori. Am. J. Math. 96, 422-429 (1974) · Zbl 0242.58003 · doi:10.2307/2373551
[23] Margulis, G.A., Qian, N.: Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices. Ergodic Theory Dynam. Syst. 21(1), 121-164 (2001) · Zbl 0976.22009 · doi:10.1017/S0143385701001109
[24] Moise, E.E.: Affine structures in \[33\]-manifolds. V. The triangulation theorem and Hauptvermutung. Ann. Math. 56(2), 96-114 (1952) · Zbl 0048.17102
[25] Parry, W.: Ergodic properties of affine transformations and flows on nil-manifolds. Am. J. Math. 91, 757-771 (1969) · Zbl 0183.51503 · doi:10.2307/2373350
[26] Pesin, Ya. B., Sinaǐ, Ya. G.: Gibbs measures for partially hyperbolic attractors. Ergodic Theory Dynam. Syst. 2(3-4), 417-438 (1982) · Zbl 0519.58035
[27] Radó, T.: Uber den Begriff der Riemannschen Fläche. Acta Litt. Sci. Szeged 2, 101-121 (1925) · JFM 51.0273.01
[28] Rauch, J., Taylor, M.: Regularity of functions smooth along foliations, and elliptic regularity. J. Funct. Anal. 225(1), 74-93 (2005) · Zbl 1073.35077 · doi:10.1016/j.jfa.2005.03.018
[29] Rodriguez Hertz, F.: Global rigidity of certain abelian actions by toral automorphisms. J. Mod. Dyn. 1(3), 425-442 (2007) · Zbl 1130.37013 · doi:10.3934/jmd.2007.1.425
[30] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Inst. Hautes Etudes Sci. Publ. Math. 50, 27-58 (1979) · Zbl 0426.58014 · doi:10.1007/BF02684768
[31] Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co., Berlin (1996) · Zbl 0873.35001
[32] Starkov, A.N.: The first cohomology group, mixing, and minimal sets of the commutative group of algebraic actions on a torus. J. Math. Sci. (New York) 95(5), 2576-2582 (1999). (Dyn. Syst. 7) · Zbl 0984.37004 · doi:10.1007/BF02169057
[33] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, vol. 18. North-Holland Publishing Co., Amsterdam (1978) · Zbl 0387.46032
[34] Walters, P.: Conjugacy properties of affine transformations of nilmanifolds. Math. Syst. Theory 4, 327-333 (1970) · Zbl 0207.22801 · doi:10.1007/BF01704076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.