×

Global rigidity of higher rank Anosov actions on tori and nilmanifolds. With an appendix by James F. Davis. (English) Zbl 1338.37040

Summary: We show that sufficiently irreducible Anosov actions of higher rank abelian groups on tori and nilmanifolds are \(C^\infty\)-conjugate to affine actions.

MSC:

37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37C20 Generic properties, structural stability of dynamical systems
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
53C24 Rigidity results
42B05 Fourier series and coefficients in several variables

References:

[1] Auslander, L.; Green, L.; Hahn, F. Flows on homogeneous spaces. With the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg. Annals of Mathematics Studies, No. 53, Princeton University Press, Princeton, N.J., 1963. · Zbl 0099.39103
[2] Luis Barreira and Yakov Pesin, Nonuniform hyperbolicity, Encyclopedia of Mathematics and its Applications, vol. 115, Cambridge University Press, Cambridge, 2007. Dynamics of systems with nonzero Lyapunov exponents. · Zbl 1144.37002
[3] P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle, Acta Arith. 18 (1971), 355 – 369. · Zbl 0221.12003
[4] Danijela Damjanović and Anatole Katok, Local rigidity of partially hyperbolic actions I. KAM method and \Bbb Z^{\?} actions on the torus, Ann. of Math. (2) 172 (2010), no. 3, 1805 – 1858. · Zbl 1209.37017 · doi:10.4007/annals.2010.172.1805
[5] James F. Davis and Paul Kirk, Lecture notes in algebraic topology, Graduate Studies in Mathematics, vol. 35, American Mathematical Society, Providence, RI, 2001. · Zbl 1018.55001
[6] Davis, J. F.; Petrosyan, N. Manifolds and Poincaré complexes, in preparation.
[8] F. T. Farrell, A. Gogolev. Anosov diffeomorphisms constructed from \( \pi _k ({\textup {Diff}}(S^n))\), preprint. · Zbl 1259.37018
[9] David Fisher and Gregory Margulis, Almost isometric actions, property (T), and local rigidity, Invent. Math. 162 (2005), no. 1, 19 – 80. · Zbl 1076.22008 · doi:10.1007/s00222-004-0437-5
[10] David Fisher and Gregory Margulis, Local rigidity of affine actions of higher rank groups and lattices, Ann. of Math. (2) 170 (2009), no. 1, 67 – 122. · Zbl 1186.22015 · doi:10.4007/annals.2009.170.67
[11] David Fisher, Boris Kalinin, and Ralf Spatzier, Totally nonsymplectic Anosov actions on tori and nilmanifolds, Geom. Topol. 15 (2011), no. 1, 191 – 216. · Zbl 1213.37043 · doi:10.2140/gt.2011.15.191
[12] John Franks, Anosov diffeomorphisms on tori, Trans. Amer. Math. Soc. 145 (1969), 117 – 124. · Zbl 0191.21604
[13] Andrey Gogolev, Diffeomorphisms Hölder conjugate to Anosov diffeomorphisms, Ergodic Theory Dynam. Systems 30 (2010), no. 2, 441 – 456. · Zbl 1185.37040 · doi:10.1017/S0143385709000169
[14] Gorodnik, A.; Spatzier, R. Exponential Mixing of Nilmanifold Automorphisms, preprint in preparation. · Zbl 1312.37007
[15] Gorodnik, A.; Spatzier, R. Mixing Properties of Commuting Nilmanifold Automorphisms, preprint in preparation. · Zbl 1360.37010
[16] Ben Green and Terence Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2) 175 (2012), no. 2, 465 – 540. · Zbl 1251.37012 · doi:10.4007/annals.2012.175.2.2
[17] Morris W. Hirsch and Barry Mazur, Smoothings of piecewise linear manifolds, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 80. · Zbl 0298.57007
[18] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. · Zbl 0355.58009
[19] Lars Hörmander, The analysis of linear partial differential operators. I, Classics in Mathematics, Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis; Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]. · Zbl 0712.35001
[20] Boris Kalinin and Anatole Katok, Invariant measures for actions of higher rank abelian groups, Smooth ergodic theory and its applications (Seattle, WA, 1999) Proc. Sympos. Pure Math., vol. 69, Amer. Math. Soc., Providence, RI, 2001, pp. 593 – 637. · Zbl 0999.37016 · doi:10.1090/pspum/069/1858547
[21] Boris Kalinin and Anatole Katok, Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori, J. Mod. Dyn. 1 (2007), no. 1, 123 – 146. · Zbl 1173.37017
[22] Boris Kalinin and Victoria Sadovskaya, Global rigidity for totally nonsymplectic Anosov \Bbb Z^{\?} actions, Geom. Topol. 10 (2006), 929 – 954. · Zbl 1126.37015 · doi:10.2140/gt.2006.10.929
[23] Boris Kalinin and Victoria Sadovskaya, On the classification of resonance-free Anosov \Bbb Z^{\?} actions, Michigan Math. J. 55 (2007), no. 3, 651 – 670. · Zbl 1233.37013 · doi:10.1307/mmj/1197056461
[24] Boris Kalinin and Ralf Spatzier, On the classification of Cartan actions, Geom. Funct. Anal. 17 (2007), no. 2, 468 – 490. · Zbl 1121.37026 · doi:10.1007/s00039-007-0602-2
[25] Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. · Zbl 0878.58020
[26] A. Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math. 75 (1991), no. 2-3, 203 – 241. · Zbl 0785.22012 · doi:10.1007/BF02776025
[27] Anatole Katok and Ralf J. Spatzier, First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 131 – 156. · Zbl 0819.58027
[28] Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. · Zbl 1055.43001
[29] Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah; Annals of Mathematics Studies, No. 88. · Zbl 0361.57004
[30] D. A. Lind, Dynamical properties of quasihyperbolic toral automorphisms, Ergodic Theory Dynamical Systems 2 (1982), no. 1, 49 – 68. · Zbl 0507.58034
[31] Anthony Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math. 96 (1974), 422 – 429. · Zbl 0242.58003 · doi:10.2307/2373551
[32] Gregory A. Margulis and Nantian Qian, Rigidity of weakly hyperbolic actions of higher real rank semisimple Lie groups and their lattices, Ergodic Theory Dynam. Systems 21 (2001), no. 1, 121 – 164. · Zbl 0976.22009 · doi:10.1017/S0143385701001109
[33] Дискретные подгруппы групп Ли., Издат. ”Мир”, Мосцощ, 1977 (Руссиан). Транслатед фром тхе Енглиш бы О. В. Šварцман; Едитед бы Ѐ. Б. Винберг; Щитх а супплемент ”Аритхметициты оф ирредуцибле латтицес ин семисимпле гроупс оф ранк греатер тхан 1” бы Г. А. Маргулис.
[34] Federico Rodriguez Hertz, Global rigidity of certain abelian actions by toral automorphisms, J. Mod. Dyn. 1 (2007), no. 3, 425 – 442. · Zbl 1130.37013 · doi:10.3934/jmd.2007.1.425
[35] Jeffrey Rauch and Michael Taylor, Regularity of functions smooth along foliations, and elliptic regularity, J. Funct. Anal. 225 (2005), no. 1, 74 – 93. · Zbl 1073.35077 · doi:10.1016/j.jfa.2005.03.018
[36] Sebastian J. Schreiber, On growth rates of subadditive functions for semiflows, J. Differential Equations 148 (1998), no. 2, 334 – 350. · Zbl 0940.37007 · doi:10.1006/jdeq.1998.3471
[37] A. N. Starkov, The first cohomology group, mixing, and minimal sets of the commutative group of algebraic actions on a torus, J. Math. Sci. (New York) 95 (1999), no. 5, 2576 – 2582. Dynamical systems. 7. · Zbl 0984.37004 · doi:10.1007/BF02169057
[38] C. T. C. Wall, Surgery on compact manifolds, Academic Press, London-New York, 1970. London Mathematical Society Monographs, No. 1. · Zbl 0219.57024
[39] Peter Walters, Conjugacy properties of affine transformations of nilmanifolds, Math. Systems Theory 4 (1970), 327 – 333. · Zbl 0207.22801 · doi:10.1007/BF01704076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.