×

Extended generalized \((Zakh\frac{G'}{G})\)-expansion method for solving the nonlinear quantum Zakharov-Kuznetsov equation. (English) Zbl 1355.35124

Summary: In this article, we apply the extended generalized \((\frac{G'}{G})\)-expansion method combined with the Jacobi elliptic equation to find new exact solutions of the nonlinear quantum Zakharov-Kuznetsov (QZK) equation with the aid of computer algebraic system Maple. Soliton solutions, periodic solutions, rational functions solutions and Jacobi elliptic functions solutions are obtained. Based on reductive perturbation technique and a series of transformation, the nonlinear QZK had been derived by many authors which can be reduced to a nonlinear ordinary differential equation (ODE) using the wave transformation. The extended generalized \((\frac{G'}{G})\)-expansion method is straightforward and concise, and it can also be applied to other nonlinear PDEs in mathematical physics.

MSC:

35K99 Parabolic equations and parabolic systems
35C05 Solutions to PDEs in closed form
35Q40 PDEs in connection with quantum mechanics
35Q53 KdV equations (Korteweg-de Vries equations)
35B10 Periodic solutions to PDEs
35C08 Soliton solutions

Software:

Maple
Full Text: DOI

References:

[1] Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform. Cambridge University Press, New York (1991) · Zbl 0762.35001 · doi:10.1017/CBO9780511623998
[2] Hirota, R.: Exact solutions of the KdV equation for multiple collisions of solutions. Phys. Rev. Lett. 27, 1192-1194 (1971) · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[3] Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522-526 (1983) · Zbl 0514.35083 · doi:10.1063/1.525721
[4] Kudryashov, N.A.: Exact soliton solutions of a generalized evolution equation of wave dynamics. J. Appl. Math. Mech. 52, 361-365 (1988) · doi:10.1016/0021-8928(88)90090-1
[5] Miura, M.R.: Bäcklund Transformation. Springer, Berlin (1978)
[6] Rogers, C., Shadwick, W.F.: Bäcklund Transformations and Their Applications. Academic Press, New York (1982) · Zbl 0492.58002
[7] He, J.-H., Wu, X.-H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700-708 (2006) · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[8] Yusufoglu, E.: New solitary for the MBBM equations using Exp-function method. Phys. Lett. A 372, 442-446 (2008) · Zbl 1217.35156 · doi:10.1016/j.physleta.2007.07.062
[9] Zhang, S.: Application of Exp-function method to high-dimensional nonlinear evolution equations. Chaos Solitons Fractals 38, 270-276 (2008) · Zbl 1142.35593 · doi:10.1016/j.chaos.2006.11.014
[10] Abdou, M.A.: The extended tanh- method and its applications for solving nonlinear physical models. Appl. Math. Comput. 190, 988-996 (2007) · Zbl 1123.65103
[11] Fan, E.G.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212-218 (2000) · Zbl 1167.35331 · doi:10.1016/S0375-9601(00)00725-8
[12] Chen, Y., Wang, Q.: Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to (1+1)-dimensional dispersive long wave equation. Chaos Solitons Fractals 24, 745-757 (2005) · Zbl 1072.35509 · doi:10.1016/j.chaos.2004.09.014
[13] Liu, S., Fu, Z., Liu, S., Zhao, Q.: Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations. Phys. Lett. A 289, 69-74 (2001) · Zbl 0972.35062 · doi:10.1016/S0375-9601(01)00580-1
[14] Lu, D.: Jacobi elliptic function solutions for two variant Boussinesq equations. Chaos Solitons Fractals 24, 1373-1385 (2005) · Zbl 1072.35567 · doi:10.1016/j.chaos.2004.09.085
[15] Zayed, E.M.E.: New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized \[(\frac{G}{G}^{\prime })\](GG′)-expansion method. J. Phys. A Math. Theor. 42, 195202 (2009). 13 pages · Zbl 1170.35310 · doi:10.1088/1751-8113/42/19/195202
[16] Wang, M.L., Li, X., Zhang, J.: The \[(\frac{G}{G}^{\prime })\](GG′)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417-423 (2008) · Zbl 1217.76023 · doi:10.1016/j.physleta.2007.07.051
[17] Zhang, S., Tong, J.L., Wang, W.: A generalized \[(\frac{G}{G}^{\prime })\](GG′)-expansion method for the mKdV equation with variable coefficients. Phys. Lett. A 372, 2254-2257 (2008) · Zbl 1220.37072 · doi:10.1016/j.physleta.2007.11.026
[18] Zayed, E.M.E., Gepreel, K.A.: The \[(\frac{G}{G}^{\prime })\](GG′)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 50, 013502-013512 (2009) · doi:10.1063/1.3033750
[19] Zayed, E.M.E.: The \[(\frac{G}{G}^{\prime })\](GG′)-expansion method and its applications to some nonlinear evolution equations in the mathematical physics. J. Appl. Math. Comput. 30, 89-103 (2009) · Zbl 1180.35023 · doi:10.1007/s12190-008-0159-8
[20] Zhang, S., SUN, Y.N., B, J.M., Dong, L.: The modified \[(\frac{G }{G}^{\prime })\](GG′)-expansion method for nonlinear evolution equations. Z. Naturforsch 66a, 33-39 (2011) · doi:10.5560/ZNA.2011.66a0033
[21] Li, L.X., Li, Q.E., Wang, L.M.: The \[(\frac{G}{G}^{\prime }, \frac{1}{G})\](GG′,1G)-expansion method and its application to traveling wave solutions of the Zakharov equations. Appl. Math. J. Chin. Univ. 25, 454-462 (2010) · Zbl 1240.35463 · doi:10.1007/s11766-010-2128-x
[22] Zayed, E.M.E., Abdelaziz, M.A.M.: The two variables \[( \frac{G}{G}^{\prime },\frac{1}{G})\](GG′,1G)-expansion method for solving the nonlinear KdV-mKdV equation. Math. Prob. Eng. 14 (2012) (Article ID 725061) · Zbl 1264.35086
[23] Zayed, E.M.E., Alurrfi, K.A.E.: The \[(\frac{G}{G}^{\prime },\frac{1}{G})\](GG′,1G)-expansion method and its applications to find the exact solutions of nonlinear PDEs for nanobiosciences. Math. Prob. Eng. 10 (2014) (Article ID 521712) · Zbl 1407.35184
[24] Zayed, E.M.E., Alurrfi, K.A.E.: On solving two higher-order nonlinear PDEs describing the propagation of optical pulses in optic fibers using the \[(\frac{G}{G}^{\prime },\frac{1}{G})\](GG′,1G)-expansion method. Ricerche mat. 64, 164-194 (2015) · Zbl 1329.35296 · doi:10.1007/s11587-015-0226-z
[25] Jawad, A.J.M., Petkovic, M.D., Biswas, A.: Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217, 869-877 (2010) · Zbl 1201.65119
[26] Zayed, E.M.E.: A note on the modified simple equation method applied to Sharma-Tasso-Olver equation. Appl. Math. Comput. 218, 3962-3964 (2011) · Zbl 1239.35170
[27] Zayed, E.M.E., Ibrahim, S.A.H.: Exact solutions of nonlinear evolution equations in mathematical physics using the modified simple equation method. Chin. Phys. Lett. 29, 060201-060204 (2012) · doi:10.1088/0256-307X/29/6/060201
[28] Ma, W.X., Zhu, Z.: Solving the (3+1)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm. Appl. Math. Comput. 218, 11871-11879 (2012) · Zbl 1280.35122
[29] Ma, W.X., Huang, T., Zhang, Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Script. 82, 065003 (2010) · Zbl 1219.35209 · doi:10.1088/0031-8949/82/06/065003
[30] Ma, W.X., Lee, J.H.: A transformed rational function method and exact solutions to the (3+1) dimensional Jimbo-Miwa equation. Chaos, Solitons Fractals 42, 1356-1363 (2009) · Zbl 1198.35231 · doi:10.1016/j.chaos.2009.03.043
[31] Ma, W.X., Wu, H.Y., He, J.S.: Partial differential equations possessing Frobenius integrable decomposition technique. Phys. Lett. A 364, 29-32 (2007) · Zbl 1203.35059 · doi:10.1016/j.physleta.2006.11.048
[32] Yang, Y.J., Baleanu, D., Yang, X.J.: A Local fractional variational iteration method for Laplace equation within local fractional operators. Abst. Appl. Anal. 6 (2013) (Article ID 202650) · Zbl 1273.65158
[33] Yang, A.M., Yang, X.J., Li, Z.B.: Local fractional series expansion method for solving wave and diffusion equations on cantor sets. Abst. Appl. Anal. 5 (2013) (Article ID 351057) · Zbl 1295.35178
[34] Raslan, H.R.: The first integral method for solving some important nonlinear partial differential equations. Nonlinear Dyn. 53, 281-291 (2008) · Zbl 1176.35149 · doi:10.1007/s11071-007-9262-x
[35] Taghizadeh, N., Mirzazadeh, M., Farahrooz, F.: Exact solutions of the nonlinear Schrödinger equation by the first integral method. J. Math. Anal. Appl. 374, 549-553 (2011) · Zbl 1202.35308 · doi:10.1016/j.jmaa.2010.08.050
[36] Lu, B.H.Q., Zhang, H.Q., Xie, F.D.: Traveling wave solutions of nonlinear parial differential equations by using the first integral method. Appl. Math. Comput. 216, 1329-1336 (2010) · Zbl 1191.35090
[37] Moslem, W.M., Ali, S., Shukla, P.K., Tang, X.Y., Rowlands, : Solitary, explosive, and periodic solutions of the quantum Zakharov-Kuznetsov equation and its transverse instability. Phys. Plasmas 14, 082308 (2007) · doi:10.1063/1.2757612
[38] Washimi, H., Taniuti, T.: Propagation of ion-acoustic solitary waves of small amplitude. Phys. Rev. Lett. 17, 996-998 (1966) · doi:10.1103/PhysRevLett.17.996
[39] Zhang, Ben-gong, Liu, Zheng-rong, Xiaob, Qing: New exact solitary wave and multiple soliton solutions of quantum Zakharov-Kuznetsov equation. Appl. Math. Comput. 217, 392-402 (2010) · Zbl 1200.35238
[40] Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, New York (1990) · Zbl 0765.35001 · doi:10.1007/978-3-7091-6961-2
[41] Zayed, E.M.E.: New traveling wave solutions for higher dimensional nonlinear evolution equations using a generalized \[(\frac{G}{G}^{\prime })\](GG′)-expansion method. J. Phys. A Math. Theor. 42, 195202 (2009) · Zbl 1170.35310 · doi:10.1088/1751-8113/42/19/195202
[42] Chen, Y., Yan, Z.: The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations. Chaos Solitons Fractals 29, 948-964 (2006) · Zbl 1142.35603 · doi:10.1016/j.chaos.2005.08.071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.