×

The \((G'/ G, 1 / G)\)-expansion method and its applications to find the exact solutions of nonlinear PDEs for nanobiosciences. (English) Zbl 1407.35184

Summary: The two-variable (\(G'/ G, 1 / G\))-expansion method is employed to construct exact traveling wave solutions with parameters of nanobiosciences partial differential equation. When the parameters are replaced by special values, the solitary wave solutions and the periodic wave solutions of this equation have been obtained from the traveling waves. This method can be thought of as the generalization of well-known original \(\left(G'/ G\right)\)-expansion method proposed by M. Wang et al. It is shown that the two-variable (\(G'/ G, 1 / G\))-expansion method provides a more powerful mathematical tool for solving many other nonlinear PDEs in mathematical physics. Comparison between our results and the well-known results is given.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C07 Traveling wave solutions
35Q51 Soliton equations
Full Text: DOI

References:

[1] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (1991), New York, NY, USA: Cambridge University Press, New York, NY, USA · Zbl 0762.35001
[2] Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Physical Review Letters, 27, 18, 1192-1194 (1971) · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[3] Weiss, J.; Tabor, M.; Carnevale, G., The Painlevé property for partial differential equations, Journal of Mathematical Physics, 24, 3, 522-526 (1983) · Zbl 0514.35083 · doi:10.1063/1.525721
[4] Kudryashov, N. A., Exact soliton solutions of a generalized evolution equation of wave dynamics, Journal of Applied Mathematics and Mechanics, 52, 3, 361-365 (1988) · doi:10.1016/0021-8928(88)90090-1
[5] Kudryashov, N. A., Exact solutions of the generalized Kuramoto-Sivashinsky equation, Physics Letters A, 147, 5-6, 287-291 (1990) · doi:10.1016/0375-9601(90)90449-X
[6] Kudryashov, N. A., On types of nonlinear nonintegrable equations with exact solutions, Physics Letters A, 155, 4-5, 269-275 (1991) · doi:10.1016/0375-9601(91)90481-M
[7] Miura, M. R., Backlund Transformation (1978), Berlin, Germany: Springer, Berlin, Germany
[8] Rogers, C.; Shadwick, W. F., Bäcklund Transformations and Their Applications (1982), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0492.58002
[9] He, J. H.; Wu, X. H., Exp-function method for nonlinear wave equations, Chaos, Solitons & Fractals, 30, 3, 700-708 (2006) · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[10] Yusufoǧlu, E., New solitonary solutions for the MBBM equations using Exp-function method, Physics Letters A, 372, 4, 442-446 (2008) · Zbl 1217.35156 · doi:10.1016/j.physleta.2007.07.062
[11] Zhang, S., Application of Exp-function method to high-dimensional nonlinear evolution equation, Chaos, Solitons & Fractals, 38, 1, 270-276 (2008) · Zbl 1142.35593 · doi:10.1016/j.chaos.2006.11.014
[12] Bekir, A., The Exp-function method for Ostrovsky equation, International Journal of Nonlinear Sciences and Numerical Simulation, 10, 6, 735-739 (2009) · doi:10.1515/IJNSNS.2009.10.6.735
[13] Bekir, A., Application of the Exp-function method for nonlinear differential-difference equations, Applied Mathematics and Computation, 215, 11, 4049-4053 (2010) · Zbl 1185.35312 · doi:10.1016/j.amc.2009.12.003
[14] Abdou, M. A., The extended tanh method and its applications for solving nonlinear physical models, Applied Mathematics and Computation, 190, 1, 988-996 (2007) · Zbl 1123.65103 · doi:10.1016/j.amc.2007.01.070
[15] Fan, E., Extended tanh-function method and its applications to nonlinear equations, Physics Letters A, 277, 4-5, 212-218 (2000) · Zbl 1167.35331 · doi:10.1016/S0375-9601(00)00725-8
[16] Zhang, S.; Xia, T. C., A further improved tanh-function method exactly solving the \((2 + 1)\)-dimensional dispersive long wave equations, Applied Mathematics E-Notes, 8, 58-66 (2008) · Zbl 1161.35496
[17] Yusufoğlu, E.; Bekir, A., Exact solutions of coupled nonlinear Klein-Gordon equations, Mathematical and Computer Modelling, 48, 11-12, 1694-1700 (2008) · Zbl 1187.35141 · doi:10.1016/j.mcm.2008.02.007
[18] Chen, Y.; Wang, Q., Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic function solutions to \((1 + 1)\)-dimensional dispersive long wave equation, Chaos, Solitons & Fractals, 24, 3, 745-757 (2005) · Zbl 1072.35509 · doi:10.1016/j.chaos.2004.09.014
[19] Liu, S.; Fu, Z.; Liu, S.; Zhao, Q., Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Physics Letters A, 289, 1-2, 69-74 (2001) · Zbl 0972.35062 · doi:10.1016/S0375-9601(01)00580-1
[20] Lü, D., Jacobi elliptic function solutions for two variant Boussinesq equations, Chaos, Solitons & Fractals, 24, 5, 1373-1385 (2005) · Zbl 1072.35567 · doi:10.1016/j.chaos.2004.09.085
[21] Wang, M. L.; Li, X.; Zhang, J., The \(\left(G^\prime / G\right)\)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Physics Letters A, 372, 4, 417-423 (2008) · Zbl 1217.76023 · doi:10.1016/j.physleta.2007.07.051
[22] Zhang, S.; Tong, J. L.; Wang, W., A generalized \(\left(G^\prime / G\right)\)-expansion method for the mKdV equation with variable coefficients, Physics Letters A, 372, 13, 2254-2257 (2008) · Zbl 1220.37072 · doi:10.1016/j.physleta.2007.11.026
[23] Zayed, E. M. E.; Gepreel, K. A., The \(\left(G^\prime / G\right)\)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics, Journal of Mathematical Physics, 50, 1 (2009) · doi:10.1063/1.3033750
[24] Zayed, E. M. E., The \(\left(G^\prime / G\right)\)-expansion method and its applications to some nonlinear evolution equations in the mathematical physics, Journal of Applied Mathematics and Computing, 30, 1-2, 89-103 (2009) · Zbl 1180.35023 · doi:10.1007/s12190-008-0159-8
[25] Bekir, A., Application of the \(\left(G^\prime / G\right)\)-expansion method for nonlinear evolution equations, Physics Letters A, 372, 19, 3400-3406 (2008) · Zbl 1228.35195 · doi:10.1016/j.physleta.2008.01.057
[26] Ayhan, B.; Bekir, A., The \(\left(G^\prime / G\right)\)-expansion method for the nonlinear lattice equations, Communications in Nonlinear Science and Numerical Simulation, 17, 9, 3490-3498 (2012) · Zbl 1254.39003 · doi:10.1016/j.cnsns.2012.01.009
[27] Kudryashov, N. A., A note on the \(\left(G^\prime / G\right)\)-expansion method, Applied Mathematics and Computation, 217, 4, 1755-1758 (2010) · Zbl 1203.35228 · doi:10.1016/j.amc.2010.03.071
[28] Aslan, I., A note on the \(\left(G^\prime / G\right)\)-expansion method again, Applied Mathematics and Computation, 217, 2, 937-938 (2010) · Zbl 1200.65056 · doi:10.1016/j.amc.2010.05.097
[29] Zayed, E. M. E., Traveling wave solutions for higher dimensional nonlinear evolution equations using the \(\left(G^\prime / G\right)\)-expansion method, Journal of Applied Mathematics & Informatics, 28, 383-395 (2010) · Zbl 1228.35014
[30] Naher, H.; Abdullah, F. A., New approach of \(\left(G^\prime / G\right)\)-expansion method and new approach of generalized \(\left(G^\prime / G\right)\)-expansion method for nonlinear evolution equation, AIP Advances, 3, 3 (2013) · doi:10.1063/1.4794947
[31] Zhang, S.; Sun, Y. N.; Ba, J. M.; Dong, L., The modified \(\left(G^\prime / G\right)\)- expansion method for nonlinear evolution equations, Zeitschrift Für Naturforschung, 66, 33-39 (2011)
[32] Li, L. X.; Li, E. Q.; Wang, L. M., The \((G^\prime / G, 1 / G)\)-expansion method and its application to travelling wave solutions of the Zakharov equations, Applied Mathematics, 25, 4, 454-462 (2010) · Zbl 1240.35463 · doi:10.1007/s11766-010-2128-x
[33] Zayed, E. M. E.; Abdelaziz, M. A. M., The two-variable \((G^\prime / G, 1 / G)\)-expansion method for solving the nonlinear KdV-mKdV equation, Mathematical Problems in Engineering, 2012 (2012) · Zbl 1264.35086 · doi:10.1155/2012/725061
[34] Zayed, E. M. E.; Ibrahim, S. A. H.; Abdelaziz, M. A. M., Traveling wave solutions of the nonlinear \((3 + 1)\) dimensional Kadomtsev-Petviashvili equation using the two variables \((G^\prime / G, 1 / G)\)-expansion method, Journal of Applied Mathematics, 2012 (2012) · Zbl 1251.65150 · doi:10.1155/2012/560531
[35] Zayed, E. M. E.; Ibrahim, S. A. H., The two variable \((G^\prime / G, 1 / G)\)-expansion method for finding exact traveling wave solutions of the \((3 + 1)\)-dimensional nonlinear potential Yu-Toda-Sasa-Fukuyama equation, Proceedings of the International Conference on Advanced Computer Science and Electronics Information, Atlantis Press
[36] Zayed, E. M. E.; Arnous, A. H., The modified simple equation method and its applications to \((2 + 1)\)-dimensional systems of nonlinear evolution equations, Scientific Research and Essays, 8, 1973-1982 (2013)
[37] Ma, W. X.; Zhu, Z., Solving the \((3 + 1)\)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm, Applied Mathematics and Computation, 218, 24, 11871-11879 (2012) · Zbl 1280.35122 · doi:10.1016/j.amc.2012.05.049
[38] Ma, W. X.; Lee, J. H., A transformed rational function method and exact solutions to the \((3 + 1)\) dimensional Jimbo-Miwa equation, Chaos, Solitons & Fractals, 42, 3, 1356-1363 (2009) · Zbl 1198.35231 · doi:10.1016/j.chaos.2009.03.043
[39] Yang, Y. J.; Baleanu, D.; Yang, X. J., A local fractional variational iteration method for Laplace equation within local fractional operators, Abstract and Applied Analysis, 2013 (2013) · Zbl 1273.65158 · doi:10.1155/2013/202650
[40] Yang, A. M.; Yang, X. J.; Li, Z. B., Local fractional series expansion method for solving wave and diffusion equations on Cantor sets, Abstract and Applied Analysis, 2013 (2013) · Zbl 1295.35178 · doi:10.1155/2013/351057
[41] Turkyilmazoglu, M.; Pop, I., Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid, International Journal of Heat and Mass Transfer, 57, 3, 82-88 (2013)
[42] Turkyilmazoglu, M., Exact solutions to heat transfer in straight fins of varying exponential shape having temperature dependent properties, International Journal of Thermal Sciences, 55, 69-75 (2012) · doi:10.1016/j.ijthermalsci.2011.12.019
[43] Turkyilmazoglu, M., Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids, Chemical Engineering Science, 84, 182-187 (2012) · doi:10.1016/j.ces.2012.08.029
[44] Turkyilmazoglu, M., Exact solutions for the incompressible viscous magnetohydrodynamic fluid of a porous rotating disk flow with Hall current, International Journal of Mechanical Sciences, 56, 86-95 (2012)
[45] Satarić, M. V.; Sekulić, D.; Živanov, M., Solitonic ionic currents along microtubules, Journal of Computational and Theoretical Nanoscience, 7, 11, 2281-2290 (2010) · doi:10.1166/jctn.2010.1609
[46] Dalibor, L. S.; Miljko, V. S.; Milos, B. Z., Symbolic computation of some new nonlinear partial differential equations of nanobiosciences using modified extended tanh-function method, Applied Mathematics and Computation, 218, 7, 3499-3506 (2011) · Zbl 1238.92001 · doi:10.1016/j.amc.2011.08.096
[47] Zayed, E. M. E.; Amer, Y. A.; Shohib, R. M. A., The improved Riccati equation mapping method for constructing many families of exact solutions for a nonlinear partial differential equation of nanobiosciences, International Journal of Physical Sciences, 8, 22, 1246-1255 (2013) · doi:10.5897/IJPS2013.3905
[48] Zayed, E. M. E.; Amer, Y. A.; Shohib, R. M. A., Improved \(\left(G^\prime / G\right)\)-expansion method for constructing exact traveling wave solutions for a nonlinear PDE of nanobiosciences, Scientific Research and Essays, 8, 1540-1546 (2013)
[49] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1965), New York, NY, USA: Dover, New York, NY, USA · Zbl 0515.33001
[50] Chen, Y.; Yan, Z., The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations, Chaos, Solitons & Fractals, 29, 4, 948-964 (2006) · Zbl 1142.35603 · doi:10.1016/j.chaos.2005.08.071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.