×

The first integral method for solving some important nonlinear partial differential equations. (English) Zbl 1176.35149

Summary: Exact solutions of some important nonlinear partial differential equations are obtained by using the first integral method. The efficiency of the method is demonstrated by applying it for two selected equations.

MSC:

35Q51 Soliton equations
35C05 Solutions to PDEs in closed form

Software:

ATFM
Full Text: DOI

References:

[1] Mitchell, A.R., Griffiths, D.F.: The Finite Difference Method in Partial Equations. Wiley, New York (1980) · Zbl 0417.65048
[2] Adomian, G.: Solving Frontier Problem of Physics: The Decomposition Method. Kluwer Academic, Boston (1994) · Zbl 0802.65122
[3] Parkes, E.J., Duffy, B.R.: An Automated tanh-function method for finding solitary wave solutions to nonlinear evolution equations. Comput. Phys. Commun. 98, 288–300 (1998) · Zbl 0948.76595 · doi:10.1016/0010-4655(96)00104-X
[4] Khater, A.H., Malfiet, W., Callebaut, D.K., Kamel, E.S.: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations. Chaos Solitons Fractals 14, 513–522 (2002) · Zbl 1002.35066 · doi:10.1016/S0960-0779(01)00247-8
[5] Evans, D.J., Raslan, K.R.: The tanh function method for solving some important nonlinear partial differential equation. Int. J. Comput. Math. 82(7), 897–905 (2005) · Zbl 1075.65125 · doi:10.1080/00207160412331336026
[6] Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000) · Zbl 1167.35331 · doi:10.1016/S0375-9601(00)00725-8
[7] Fan, E.: Traveling wave solutions for generalized Hirota–Satsuma coupled KdV systems. Z. Naturforsch. A 56, 312–318 (2001)
[8] Elwakil, S.A., El-Labany, S.K., Zahran, M.A., Sabry, R.: Modified extended tanh-function method for solving nonlinear partial differential equations. Phys. Lett. A 299, 179–188 (2002) · Zbl 0996.35043 · doi:10.1016/S0375-9601(02)00669-2
[9] Gao, Y.T., Tian, B.: Generalized hyperbolic-function method with computerized symbolic computation to construct the solitonic solutions to nonlinear equations of mathematical physics. Comput. Phys. Commun. 133, 158–164 (2001) · Zbl 0976.65092 · doi:10.1016/S0010-4655(00)00168-5
[10] Tian, B., Gao, Y.T.: Observable solitonic features of the generalized reaction diffusion model. Z. Naturforsch. A 57, 39–44 (2002)
[11] Tang, X.-Y., Lou, S.-Y.: Abundant structures of the dispersive long-wave equation in (2+1)-dimensional spaces. Chaos Solitons Fractals 14, 1451–1456 (2002) · Zbl 1037.35062 · doi:10.1016/S0960-0779(02)00077-2
[12] Tang, X.-Y., Lou, S.-Y.: Localized excitations in (2+1)-dimensional systems. Phys. Rev. E 66, 46601 (2002) · Zbl 1079.37513 · doi:10.1103/PhysRevE.66.046601
[13] Feng, Z.S.: On explicit exact solutions to the compound Burgers–KdV equation. Phys. Lett. A 293, 57–66 (2002) · Zbl 0984.35138 · doi:10.1016/S0375-9601(01)00825-8
[14] Feng, Z.S.: The first integer method to study the Burgers–Korteweg–de Vries equation. Phys. Lett. A: Math. Gen. 35, 343–349 (2002) · Zbl 1040.35096 · doi:10.1088/0305-4470/35/2/312
[15] Feng, Z.S.: Exact solution to an approximate sine-Gordon equation in (n+1)-dimensional space. Phys. Lett. A 302, 64–76 (2002) · Zbl 0998.35046 · doi:10.1016/S0375-9601(02)01114-3
[16] Feng, Z.S., Wang, X.H.: The first integral method to the two-dimensional Burgers–Korteweg–de Vries equation. Phys. Lett. A 308, 173–178 (2003) · Zbl 1008.35062 · doi:10.1016/S0375-9601(03)00016-1
[17] Li, H., Guo, Y.: New exact solutions to the Fitzhugh–Nagumo equation. Appl. Math. Comput. 180, 524–528 (2006) · Zbl 1102.35315 · doi:10.1016/j.amc.2005.12.035
[18] Ding, T.R., Li, C.Z.: Ordinary Differential Equations. Peking University Press, Peking (1996)
[19] Bourbaki, N.: Commutative Algebra. Addison–Wesley, Paris (1972) · Zbl 0279.13001
[20] Raslan, K.R.: Collocation method using cubic B-spline for the generalized equal width equation. Int. J. Simul. Process Model. 2, 37–44 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.