×

A survey of the additive eigenvalue problem (with Appendix by M. Kapovich). (English) Zbl 1354.14074

This is a survey article on the classical Hermitian eigenvalue problem and its generalization to an arbitrary connected reductive group. The classical Hermitian eigenvalue problem starting with the work of H. Weyl [Math. Ann. 71, 441–479 (1912; JFM 43.0436.01)] is the following: determines all triples of \(n\)-tuples of nonincreasing real numbers: \(\lambda=(\lambda_1,\dots,\lambda_n)\), \(\mu=(\mu_1,\dots,\mu_n)\) et \(\nu=(\nu_1,\dots,\nu_n)\) such that there exist Hermitian matrices \(A\), \(B\), \(C=A+B\) with eigenvalues \(\lambda\), \(\mu\) et \(\nu\).
The solution was conjecture given by A. Horn [Pac. J. Math. 12, 225–241 (1962; Zbl 0112.01501)] and proved by A. A. Klyachko [Sel. Math., New Ser. 4, No. 3, 419–445 (1998; Zbl 0915.14010)] and A. Knutson and T. Tao [J. Am. Math. Soc. 12, No. 4, 1055–1090 (1999; Zbl 0944.05097)] The sets \(\lambda\), \(\mu\) et \(\nu\) are the solutions of the inequalities: \(\sum^{n}_{i=1}\nu_i =\sum^{n}_{i=1}\lambda_i+\sum^{n}_{i=1}\mu_i\) et \(\sum_{k\in K}\nu_i \leq\sum_{i\in I}\lambda_j+\sum_{j\in J}\mu_i\) for an appropriate family of sets \((I,J,K)\). It was proved by P. Belkale [Compos. Math. 129, No. 1, 67–86 (2001; Zbl 1042.14031)] and A. Knutson et al. [J. Am. Math. Soc. 17, No. 1, 19–48 (2004; Zbl 1043.05111)] that the above system of inequalities is overdetermined.
The above Hermitian eigenvalue problem has been generalized to an arbitrary complex semisimple group. Let \(G\) be a connected, semisimple complex algebraic group. We fix a Borel subgroup, a maximal torus \(H\), and a maximal compact subgroup \(K\) and let \(\underline{h}\) and \(\underline{k}\) be their Lie algebras. Let \(\underline{h}_+\subset \underline{h}\) be the positive Weyl chamber. There is a natural homeomorphism \(f : \underline{k}/K \rightarrow \underline{h}_+\). For any positive integer \(s\), define the eigencone \[ \overline{\Gamma}_s(\underline{g})=\{(h_1,\dots,h_s)\in \underline{h}^s_+\mathrm{\;such \;that\;} \exists (k_1,\dots,k_s)\in \underline{k}^s \mathrm{\;with \;}\sum k_i=0\mathrm{\;et\;}f(k_i)=h_i\;\forall i\}. \] The aim of the general additive eigenvalue problem is to find the inequalities describing the eigencone \(\overline{\Gamma}(\underline{g})\) explicitly.
The general additive eigenvalue problem was solved by A. Berenstein and R. Sjamaar [J. Am. Math. Soc. 13, No. 2, 433–466 (2000; Zbl 0979.53092)], M. Kapovich et al. [Geom. Funct. Anal. 19, No. 4, 1081–1100 (2009; Zbl 1205.53037)] and P. Belkale and S. Kumar [Invent. Math. 166, No. 1, 185–228 (2006; Zbl 1106.14037)] using the deformed cup product (known as the Belkale-Kumar product) on singular homology with integral coefficients \(H^* (G/P , Z)\) of a flag variety \(G/P\).
Then, one can determine the saturated tensor semigroup \(\overline{\Gamma}(G)\). Similar to the eigencone, one defines the saturated tensor semigroup \[ \overline{\Gamma}_s(G)=\{(\lambda_1,\dots,\lambda_s)\mathrm{\;dominant\;characters\;such\;that\;} \exists\; \]
\[ [V(N(\lambda_1)\otimes\dots\otimes V(N(\lambda_s))]^G\neq0 \mathrm{\;for\;some \;}N\geq1\}. \] \(\overline{\Gamma}_s(G)\) is identified, via the Killing form, with the set of dominant characters in \(\overline{\Gamma}_s(\underline{g})\).
The proof of previous result follows from the Hilbert-Mumford criterion for semistability, Kempf’s maximally destabilizing one parameter subgroups, Kempf’s parabolic subgroups associated to unstable points and the notion of Levi-movability.
An “explicit” determination of the eigencone hinges upon understanding the Belkale-Kumar product in the Schubert basis, for all the maximal parabolic subgroups P. This product is easier to understand than the usual cup product since in general “many more” terms in the Belkale-Kumar product in the Schubert basis drop out. However, the Belkale-Kumar product has a drawback in that it is not functorial.
Finally the author consider the saturation problem which aims at connecting the tensor product semigroup \[ T_s(G)= \{(\lambda_1,\dots,\lambda_s) \mathrm{\;dominant\;weights\;such \;that\;} [V (\lambda_1)\otimes \dots\otimes V(\lambda_s )]^G\neq0 \} \] with the saturated tensor product semigroup \(\Gamma_s (G)\). An integer \(d \geq 1\) is called a saturation factor for \(G\), if for any \((\lambda,\mu,\nu) \in \Gamma_3(G)\) such that \(\lambda+\mu+\nu\) belongs to the root lattice, then \((d\lambda,d\mu,d\nu)\in T_3 (G)\). Such a \(d\) always exists. If \(d = 1\) is a saturation factor for \(G\), we say that the saturation property holds for \(G\).
The saturation theorem of A. Knutson and T. Tao [J. Am. Math. Soc. 12, No. 4, 1055–1090 (1999; Zbl 0944.05097)] asserts that the saturation property holds for \(G =\mathrm{SL}(n)\). A general result (though not optimal) on saturation factor is obtained by M. Kapovich and J. J. Millson [Groups Geom. Dyn. 2, No. 3, 405–480 (2008; Zbl 1147.22011)].

MSC:

14M15 Grassmannians, Schubert varieties, flag manifolds
20G15 Linear algebraic groups over arbitrary fields

References:

[1] W. Ballmann, Lectures on Spaces of Nonpositive Curvature (With an Appendix by Misha Brin), DMV Seminar, Vol. 25, Birkhäuser Verlag, Basel, 1995. · Zbl 0834.53003
[2] A. Balser, Polygons with prescribed Gauss map in Hadamard spaces and Euclidean buildings, Canad. Math. Bull. 49 (2006), 321-336. · Zbl 1114.53030 · doi:10.4153/CMB-2006-033-3
[3] N. Bardy-Panse, S. Gaussent, C. Charignon, G. Rousseau, Une preuve plus immobilière du théorème de “saturation” de Kapovich-Leeb-Millson, Enseign. Math. (2) 59 (2013), no. 1-2, 3-37. · Zbl 1298.51012
[4] P. Belkale, Local systems on ℙ1-S for S a finite set, Compositio Math. 129 (2001), 67-86. · Zbl 1042.14031 · doi:10.1023/A:1013195625868
[5] P. Belkale, Invariant theory of GL(n) and intersection theory of Grassmannians, IMRN 2004, no. 69, 3709-3721. · Zbl 1082.14050
[6] P. Belkale, Geometric proofs of Horn and saturation conjectures, J. Alg. Geom. 15 (2006), 133-173. · Zbl 1090.14014 · doi:10.1090/S1056-3911-05-00420-0
[7] P. Belkale, Geometric proof of a conjecture of Fulton, Advances Math. 216 (2007), 346-357. · Zbl 1129.14063 · doi:10.1016/j.aim.2007.05.013
[8] P. Belkale, S. Kumar, Eigenvalue problem and a new product in cohomology of ag varieties, Invent. Math. 166 (2006), 185-228. · Zbl 1106.14037 · doi:10.1007/s00222-006-0516-x
[9] P. Belkale, S. Kumar, Eigencone, saturation and Horn problems for symplectic and odd orthogonal groups, J. Algebraic Geom. 19 (2010), 199-242. · Zbl 1233.20040 · doi:10.1090/S1056-3911-09-00517-7
[10] P. Belkale, S. Kumar, N. Ressayre, A generalization of Fulton’s conjecture for arbitrary groups, Math. Annalen 354 (2012), 401-425. · Zbl 1258.14008 · doi:10.1007/s00208-011-0728-2
[11] A. Berenstein, M. Kapovich, Stability inequalities and universal Schubert calculus of rank 2, Transformation Groups 16 (2011), 955-1007. · Zbl 1242.14046 · doi:10.1007/s00031-011-9161-6
[12] A. Berenstein, R. Sjamaar, Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion, Journ. Amer. Math. Soc. 13 (2000), 433-466. · Zbl 0979.53092 · doi:10.1090/S0894-0347-00-00327-1
[13] S. Billey, V. Lakshmibai, Singular Loci of Schubert Varieties, Progress in Mathematics, Vol. 182, Birkhäuser, Boston, 2000. · Zbl 0959.14032
[14] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4-6, Masson, Paris, 1981. · Zbl 0483.22001
[15] E. Braley, Eigencone Problems for Odd and Even Orthogonal Groups, PhD thesis (under the supervision of P. Belkale), University of North Carolina, 2012. · Zbl 1205.17026
[16] M. Brion, Restriction de représentations et projections d’orbites coadjointes (d’après Belkale, Kumar et Ressayre), Séminaire Bourbaki, 64ème année, Vol. 2011/2012, no. 1043, Soc. Math. de France, pp. 1-30. · Zbl 1295.22029
[17] T. Bröcker, T. tom Dieck, Representations of Compact Lie Groups, Graduate Texts in Mathematics, Vol. 98, Springer-Verlag, Berlin, 1985. · Zbl 0581.22009
[18] F. Bruhat, J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5-251. · Zbl 0254.14017 · doi:10.1007/BF02715544
[19] N. Chriss, V. Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, Boston, 1997. · Zbl 0879.22001
[20] B. И Данилов, Γ. A. Кошевой, Дискрeтная выпуклость и эрмитовы матрицы Tруды мат. инст. им B. A. Cтеклова 241 (2003), 68-89. Engl. transl.: V. I. Danilov, G. A. Koshevoi, Discrete convexity and Hermitian matrices, Proc. Steklov Inst. Math. 241 (2003), 58-78. · Zbl 1172.20033
[21] H. Derksen, J. Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc. 13 (2000), 467-479. · Zbl 0993.16011 · doi:10.1090/S0894-0347-00-00331-3
[22] I. Dimitrov, M. Roth, Cup products of line bundles on homogeneous varieties and generalized PRV components of multiplicity one, preprint (2009). · Zbl 1367.14017
[23] I. Dimitrov, M. Roth, Geometric realization of PRV components and the Littlewood-Richardson cone, Contemp. Math. 490 (2009), Amer. Math. Soc., Providence, RI, 83-95. · Zbl 1241.17008
[24] I. Dolgachev, Y. Hu, Variation of geometric invariant theory quotients, Publ. Math. IHES 87 (1998), 5-51. · Zbl 1001.14018 · doi:10.1007/BF02698859
[25] H. Duan, The degree of a Schubert variety, Advances in Math. 180 (2003), 112-133. · Zbl 1078.14073 · doi:10.1016/S0001-8708(02)00098-1
[26] H. Duan, Multiplicative rule of Schubert classes, Invent. Math. 159 (2005), 407-436. · Zbl 1077.14067 · doi:10.1007/s00222-004-0394-z
[27] H. Duan, X. Zhao, Algorithm for multiplying Schubert classes, Internat. J. Algebra Comput. 16 (2006), 1197-1210. · Zbl 1107.14047 · doi:10.1142/S021819670600344X
[28] D. Eisenbud, J. Harris, Divisors on general curves and cuspidal rational curves, Invent. Math. 74 (1983), 371-418. · Zbl 0527.14022 · doi:10.1007/BF01394242
[29] A. G. Elashvili, Invariant algebras, in: “Lie Groups, their Discrete Subgroups, and Invariant Theory” (ed. E. B. Vinberg), Advances in Soviet Math. 8, Amer. Math. Soc., Providence, 1992, pp. 57-64. · Zbl 0805.17006
[30] S. Evens, W. Graham, The Belkale-Kumar cup product and relative Lie algebra cohomology. With an appendix by S. Evens, W. Graham and E. Richmond, Int. Math. Res. Not. IMRN 2013 (2013), no. 8, 1901-1933. · Zbl 1312.14062
[31] S. Evens, W. Graham, The relative Hochschild-Serre spectral sequence and the Belkale-Kumar product, Trans. Amer. Math. Soc. 365 (2013), no. 11, 5833-5857. · Zbl 1376.17028 · doi:10.1090/S0002-9947-2013-05792-3
[32] K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations, I, Proc. Nat. Acad. Sci. USA 35 (1949), 652-655. · Zbl 0041.00602 · doi:10.1073/pnas.35.11.652
[33] B. Fontaine, J. Kamnitzer, Cyclic sieving, rotation, and geometric representation theory, Selecta Math. (N.S.) 20 (2014), no. 2, 609-625. · Zbl 1295.22018
[34] B. Fontaine, J. Kamnitzer, G. Kuperberg, Buildings, spiders, and geometric Satake, Compositio Math. 149 (2013), no. 11, 1871-1912. · Zbl 1304.22016 · doi:10.1112/S0010437X13007136
[35] W. Fulton, Young Tableaux, London Math. Society, Cambridge University Press, 1997. · Zbl 0567.14027
[36] W. Fulton, Intersection Theory, 2nd edn., Springer, New York, 1998. · Zbl 0885.14002 · doi:10.1007/978-1-4612-1700-8
[37] W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. (N.S.) 37 (2000), 209-249. · Zbl 0994.15021
[38] C. F. Gauss, Letter to W. Bolyai, Werke, Band VIII (German) [Collected works, Vol. VIII] Reprint of the 1900 original, Georg Olms Verlag, Hildesheim, 1973, pp. 222-223. Collected Works, Vol. 8, 222-223. · Zbl 0134.03501
[39] S. Gaussent, P. Littelmann, LS-Galleries, the path model, and MV-cycles, Duke Math. J. 127 (2005), 35-88. · Zbl 1078.22007 · doi:10.1215/S0012-7094-04-12712-5
[40] S. Gaussent, P. Littelmann, One-skeleton galleries, the path model, and a generalization of Macdonald’s formula for Hall-Littlewood polynomials, Int. Math. Res. Notices 2012 (2012), no. 12, 2649-2707. · Zbl 1244.05226
[41] S. Gaussent, G. Rousseau, Kac-Moody groups, hovels and Littelmann paths, Annales L’Inst. Fourier 58 (2008), 2605-2657. · Zbl 1161.22007 · doi:10.5802/aif.2423
[42] B. Gross, On the Satake isomorphism, in: Galois Representations in Arithmetic Algebraic Geometry (Durham, 1996), London Math. Soc. Lecture Notes, Vol. 254, Cambridge Univ. Press, Cambridge, 1998, pp. 223-237. · Zbl 0996.11038
[43] T. Haines, Structure constants for Hecke and representations rings, Int. Math. Res. Notices 2003 (2003), no. 39, 2103-2119. · Zbl 1071.22020 · doi:10.1155/S1073792803131285
[44] T. Haines, Equidimensionality of convolution morphisms and applications to saturation problems (with Appendix by T. Haines, M. Kapovich, J. J. Millson), Advances in Math. 207 (2006), 297-327. · Zbl 1161.20043
[45] T. Haines, M. Kapovich, J. J. Millson, Ideal triangles in Euclidean buildings and branching to Levi subgroups, J. Algebra 361 (2012), 41-78. · Zbl 1272.20033 · doi:10.1016/j.jalgebra.2012.04.001
[46] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977. Russian transl.: P. Хартсхорн Aалгебраическая геометрия, Mир, M., 1981. · Zbl 0367.14001
[47] W. H. Hesselink, Desingularizations of varieties of nullforms, Invent. Math. 55 (1979), 141-163. · Zbl 0401.14006 · doi:10.1007/BF01390087
[48] A. Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 225-241. · Zbl 0112.01501 · doi:10.2140/pjm.1962.12.225
[49] J. C. Jantzen, Representations of Algebraic Groups, 2nd edn., Mathematical Surveys and Monographs, Vol. 107, Amer. Math. Soc., Providence, RI, 2003. · Zbl 1034.20041
[50] J. Kamnitzer, Mirković-Vilonen cycles and polytopes, Annals of Math. (2) 171 (2010), 245-294. · Zbl 1271.20058
[51] M. Kapovich, Generalized triangle inequalities and their applications, Proceedings of the International Congress of Mathematicians, Madrid, (2006), 719-742. · Zbl 1130.53037
[52] M. Kapovich, S. Kumar, J. J. Millson, The eigencone and saturation for Spin(8), Pure and Applied Math. Quarterly 5 (2009), 755-780. · Zbl 1188.20045 · doi:10.4310/PAMQ.2009.v5.n2.a7
[53] M. Kapovich, B. Leeb, J. J. Millson, Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity, J. Diff. Geom. 81 (2009), 297-354. · Zbl 1167.53044
[54] M. Kapovich, B. Leeb, J. J. Millson, Polygons in buildings and their refined side-lengths, Geom. and Funct. Analysis 19 (2009), 1081-1100. · Zbl 1205.53037 · doi:10.1007/s00039-009-0026-2
[55] M. Kapovich, B. Leeb, J. J. Millson, The Generalized Triangle Inequalities in Symmetric Spaces and Buildings with Applications to Algebra, Memoirs of AMS, Vol. 192, Amer. Math. Soc., Providence, RI, 2008. · Zbl 1140.22009
[56] B. Kleiner, B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Publ. Math. IHES 86 (1997), 115-197. · Zbl 0910.53035 · doi:10.1007/BF02698902
[57] M. Kapovich, J. J. Millson, Structure of the tensor product semigroup, Asian J. Math. 10 (2006), 493-540. · Zbl 1108.22010 · doi:10.4310/AJM.2006.v10.n3.a2
[58] M. Kapovich, J. J. Millson, A path model for geodesics in Euclidean buildings and its applications to representation theory, Groups, Geometry and Dynamics 2 (2008), 405-480. · Zbl 1147.22011 · doi:10.4171/GGD/46
[59] F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Princeton University Press, 1984. · Zbl 0553.14020
[60] A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Mathematica 4 (1998), 419-445. · Zbl 0915.14010 · doi:10.1007/s000290050037
[61] A. Knutson, K. Purbhoo, Product and puzzle formulae for GLnBelkale-Kumar coeficients, Electr. J. Combinatorics 18 (2011), P76. · Zbl 1232.05239
[62] A. Knutson, T. Tao, The honeycomb model of GLn(ℂ) tensor products I: Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), 1055-1090. · Zbl 0944.05097 · doi:10.1090/S0894-0347-99-00299-4
[63] A. Knutson, T. Tao, C. Woodward, The honeycomb model of GLn(ℂ) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), 19-48. · Zbl 1043.05111 · doi:10.1090/S0894-0347-03-00441-7
[64] B. Kostant. Lie algebra cohomology and the generalized Borel-Weil theorem, Annals of Math. 74 (1961), 329-387. · Zbl 0134.03501 · doi:10.2307/1970237
[65] S. Kumar, Kac-Moody Groups, their Flag Varieties and Representation Theory, Progress in Mathematics, Vol. 204, Birkhäuser, Boston, 2002. · Zbl 1026.17030
[66] S. Kumar, On the Cachazo-Douglas-Seiberg-Witten conjecture for simple Lie algebras, J. Amer. Math. Soc. 21 (2008), 797-808. · Zbl 1213.17011 · doi:10.1090/S0894-0347-08-00599-7
[67] S. Kumar, Tensor product decomposition, Proc. of the International Congress of Mathematicians, Hyderabad (India), (2010), 1226-1261. · Zbl 1236.22012
[68] S. Kumar, B. Leeb, J. J. Millson, The generalized triangle inequalities for rank 3 symmetric spaces of noncompact type, Contemp. Math. 332 (2003), 171-195. · Zbl 1044.22009 · doi:10.1090/conm/332/05936
[69] S. Kumar, J. Stembridge, Special isogenies and tensor product multiplicities, Inter. Math. Res. Not. 2007 (2007), no. 20, 1-13. · Zbl 1133.22004
[70] B. Lee, A Comparison of Eigencones Under Certain Diagram Automorphisms, PhD thesis (under the supervision of S. Kumar), University of North Carolina, 2012. · Zbl 0527.14022
[71] B. Б, Лидский, Собственные значения суммы и nроизведения симметрическиx матриц, ДAH CCCP 74 (1950), 769-772. Engl. transl.: V. B. Lidskii, The proper values of the sum and product of symmetric matrices, translated by C. D. Benster, N.B.S. Rep. 2248. U. S. Department of Commerce, National Bureau of Standards, Washington, D.C. (1953). 8 pp. · Zbl 1242.14046
[72] P. Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math. 116 (1994), 329-346. · Zbl 0805.17019 · doi:10.1007/BF01231564
[73] P. Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), 499-525. · Zbl 0858.17023
[74] P. Littelmann, Characters of representations and paths inhℝ*\[ {\mathfrak{h}}_{\mathbb{R}}^* \], in: Representation Theory and Automorphic Forms (Edinburgh, 1996), Proc. Sympos. Pure Math., Vol. 61, Amer. Math. Soc., Providence, RI, 1997, pp. 29-49. · Zbl 0892.17010
[75] I. Mirković, K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), 95-143. · Zbl 1138.22013
[76] P-L. Montagard, B. Pasquier, N. Ressayre, Two generalisations of the PRV conjecture, Compositio Math. 147 (2011), 1321-1336. · Zbl 1229.22013 · doi:10.1112/S0010437X10005233
[77] P-L. Montagard, B. Pasquier, N. Ressayre, Generalisations of the PRV conjecture, II, preprint (2012). · Zbl 1342.22026
[78] P-L. Montagard, N. Ressayre, Sur des faces du cône de Littlewood-Richardson généralisé, Bull. SMF 135 (2007), 343-365. · Zbl 1172.20033
[79] E. Mukhin, V. Tarasov, A. Varchenko, Schubert calculus and representations of the general linear group, J. Amer. Math. Soc. 22 (2009), 909-940. · Zbl 1205.17026 · doi:10.1090/S0894-0347-09-00640-7
[80] D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, 3rd edn., Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 34, Springer, Berlin, 1994. · Zbl 0797.14004
[81] L. Ness, A stratification of the null cone via the moment map (with an appendix by D. Mumford), Amer. J. Math. 106 (1984), 1281-1329. · Zbl 0604.14006 · doi:10.2307/2374395
[82] A. Parreau, Immeubles affines: construction par les normes et étude des isométries, in: Crystallographic Groups and Their Generalizations (Kortrijk, 1999), Contemp. Math., Vol. 262, Amer. Math. Soc., Providence, RI, 2000, pp. 263-302. · Zbl 1060.20027
[83] B. Pasquier, N. Ressayre, The saturation property for branching rules-Examples, Exp. Math. 22 (2013), no. 3, 299-312. · Zbl 1280.22017 · doi:10.1080/10586458.2013.813746
[84] K. Purbhoo, Vanishing and nonvanishing criteria in Schubert calculus, Inter. Math. Res. Not. (2006), Art. ID 24590, 38 pp. · Zbl 1129.14073
[85] K. Purbhoo, F. Sottile, The recursive nature of cominuscule Schubert calculus, Advances Math. 217 (2008), 1962-2004. · Zbl 1141.14032 · doi:10.1016/j.aim.2007.09.010
[86] S. Ramanan, A. Ramanathan, Some remarks on the instability flag, Tôhoku Math. J. 36 (1984), 269-291. · Zbl 0567.14027 · doi:10.2748/tmj/1178228852
[87] N. Ressayre, The GIT equivalence for G-line bundles, Geom. Dedicata 81 (2000), 295-324. · Zbl 0955.14035 · doi:10.1023/A:1005275524522
[88] N. Ressayre, Geometric invariant theory and the generalized eigenvalue problem, Invent. Math. 180 (2010), 389-441. · Zbl 1197.14051 · doi:10.1007/s00222-010-0233-3
[89] N. Ressayre, A short geometric proof of a conjecture of Fulton, L’Enseign. Math. 57 (2011), 103-115. · Zbl 1234.14035 · doi:10.4171/LEM/57-1-5
[90] N. Ressayre, A cohomology-free description of eigencones in types A, B, and C, Inter. Math. Res. Not. (2012), no. 21, 4966-5005. · Zbl 1270.14026
[91] N. Ressayre, GIT-cones and quivers, Math. Zeit. 270 (2012), no. 1-2, 263-275. · Zbl 1267.14060 · doi:10.1007/s00209-010-0796-0
[92] N. Ressayre, Geometric invariant theory and generalized eigenvalue problem II, Annales de l’Institut Fourier 61 (2011), no. 4, 1467-1491. · Zbl 1245.14045 · doi:10.5802/aif.2647
[93] N. Ressayre, Multiplicative formulas in Schubert calculus and quiver representation, Indag. Math. 22 (2011), 87-102. · Zbl 1232.14037 · doi:10.1016/j.indag.2011.08.004
[94] N. Ressayre, Reductions for branching coefficients, preprint (2012). · Zbl 1481.14073
[95] N. Ressayre, E. Richmond, Branching Schubert calculus and the Belkale-Kumar product on cohomology, Proc. Amer. Math. Soc. 139 (2011), 835-848. · Zbl 1231.14038 · doi:10.1090/S0002-9939-2010-10681-0
[96] E. Richmond, A partial Horn recursion in the cohomology of flag varieties, J. Algebraic Comb. 30 (2009), 1-17. · Zbl 1239.14043 · doi:10.1007/s10801-008-0149-9
[97] E. Richmond, A multiplicative formula for structure constants in the cohomology of flag varieties, Michigan Math. J. 61 (2012), 3-17. · Zbl 1267.14070 · doi:10.1307/mmj/1331222845
[98] M. Ronan, Lectures on Buildings, Perspectives in Mathematics , Vol. 7, Academic Press, New York, 1989. · Zbl 0694.51001
[99] M. Roth, Reduction rules for Littlewood-Richardson coefficients, Inter. Math. Res. Not. (2011), no. 18, 4105-4134. · Zbl 1261.20046
[100] S. Sam, Symmetric quivers, invariant theory, and saturation theorems for the classical groups, Adv. Math. 229 (2012), 1104-1135. · Zbl 1271.20060 · doi:10.1016/j.aim.2011.10.009
[101] C. Schwer, Galleries, Hall-Littlewood polynomials and structure constants of the spherical Hecke algebra, Int. Math. Res. Notes (2006) Art. ID 75395, 31 pp. · Zbl 1121.05121
[102] И. R. Шафаревич, Oсновы алгебраической геометрии 1, Haукa, M., 1988. Engl. transl.: I. R. Shafarevich, Basic Algebraic Geometry 1, 2nd revised and expanded ed., Springer-Verlag, Berlin, 1994. · Zbl 0895.00020
[103] R. Sjamaar, Convexity properties of the moment mapping re-examined, Advances Math. 138 (1998), 46-91. · Zbl 0915.58036 · doi:10.1006/aima.1998.1739
[104] F. Sottile, General isotropic flags are general (for Grassmannian Schubert calculus), J. Algebraic Geom. 19 (2010), 367-370. · Zbl 1190.14052 · doi:10.1090/S1056-3911-09-00518-9
[105] R.C. Thompson, L. Freede, On the eigenvalues of sums of Hermitian matrices, Linear Algebra Appl. 4 (1971), 369-376. · Zbl 0228.15005 · doi:10.1016/0024-3795(71)90007-3
[106] H. Weyl, Das asymptotische verteilungsgesetz eigenwerte linearer partieller differential gleichungen, Math. Annalen 71 (1912), 441-479. · JFM 43.0436.01 · doi:10.1007/BF01456804
[107] H. Wielandt, An extremum property of sums of eigenvalues, Proc. Amer. Math. Soc. 6 (1955), 106-110. · Zbl 0064.24703 · doi:10.1090/S0002-9939-1955-0067842-9
[108] A. Zelevinsky, Littlewood-Richardson semigroups, in: New Perspectives in Algebraic Combinatorics, MSRI Publ. 38 (1999), Cambridge Univ. Press, Cambridge, 337-345. · Zbl 0935.05094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.