×

Cyclic sieving, rotation, and geometric representation theory. (English) Zbl 1295.22018

Let \(X\) be a finite set and \(c \in S_X\) be a permutation of \(X\) of order \(r\). We can study the sizes of the fixed point set \(X^{c^d}\) for \(d\geq 0\). Let \(f(q)\) be a polynomial. Following Reiner-Stanton-White, we say that \((X,c,f(q))\) exhibits the cyclic sieving phenomenon (CSP) if \(f(\zeta^d)=|X^{c^d}|\) for all \(d\geq 0\), where \(\zeta\) is a fixed primitive \(r\)th root of unity.
Rhoades proved that the set of semistandard Young tableaux of fixed rectangular shape and fixed content exhibits the CSP.
The goal of the present paper is to generalize Rhoades’ result, simplify his proof, and situate the result in the context of geometric representation theory.

MSC:

22E46 Semisimple Lie groups and their representations
22E57 Geometric Langlands program: representation-theoretic aspects
05E10 Combinatorial aspects of representation theory

References:

[1] Braden, T., Licata, A., Proudfoot, N., Webster, B.: Algebraic and geometric category O (in preparation) · Zbl 1284.16029
[2] Fontaine, B., Kamnitzer, J., Kuperberg, G.: Buildings, spiders and geometric Satake. Comp. Math. (2013, accepted) · Zbl 1304.22016
[3] Fourier, G., Littelmann, P.: Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions. Adv. Math. 211(2), 566-593 (2007) · Zbl 1114.22010 · doi:10.1016/j.aim.2006.09.002
[4] Ginzburg, V.: Perverse sheaves on a loop group and Langlands duality. arXiv:alg-geom/9511007 (1995, preprint) · Zbl 1308.17018
[5] Haines, T.J.: Equidimensionality of convolution morphisms and applications to saturation problems. Adv. Math. 207(1), 297-327 (2006). arXiv:math/0501504 · Zbl 1161.20043 · doi:10.1016/j.aim.2005.11.014
[6] Henriques, A., Kamnitzer, J.: Crystals and coboundary categories. Duke Math. J. 132, 191-216 (2006) · Zbl 1123.22007 · doi:10.1215/S0012-7094-06-13221-0
[7] Kato, S.: Spherical functions and a q-analogue of Kostant’s weight multiplicity formula. Invent. Math. 66, 461-468 (1982) · Zbl 0498.17005 · doi:10.1007/BF01389223
[8] Kodera, R., Naoi, K.: Loewy series of Weyl modules and the Poincaré polynomials of quiver varieties. Publ. RIMS 48(3), 477-500 (2012) · Zbl 1308.17018 · doi:10.2977/PRIMS/77
[9] Lusztig, G.: Singularities, character formulas, and a \[q\] q-analog of weight multiplicities. In: Analysis and Topology on Singular Spaces, II, III (Luminy, 1981), vol. 101, pp. 208-229. Astérisque, Mathematical Society France (1983) · Zbl 0561.22013
[10] Mirković, I., Vilonen, K.: Geometric Langlands duality and representations of algebraic groups over commutative rings. Ann. Math. (2) 166(1), 95-143 (2007). arXiv:math/0401222 · Zbl 1138.22013 · doi:10.4007/annals.2007.166.95
[11] Mirković, I., Vybornov, M.: Quiver varieties and Beilinson-Drinfeld Grassmannians of type A. arXiv:0712.4160v2 (2007) · Zbl 1068.14056
[12] Nakajima, H.: Quiver varieties and finite dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14, 145-238 (2001) · Zbl 0981.17016 · doi:10.1090/S0894-0347-00-00353-2
[13] Petersen, T.K., Pylyavskyy, P., Rhoades, B.: Promotion and cyclic sieving via webs. J. Algebraic Comb. 30(1), 19-41 (2009) · Zbl 1226.05260 · doi:10.1007/s10801-008-0150-3
[14] Rhoades, B.: Cyclic sieving, promotion, and representation theory. J. Comb. Theory Ser. A 117(1), 38-76 (2010) · Zbl 1230.05289 · doi:10.1016/j.jcta.2009.03.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.