×

Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction. (English) Zbl 1178.74075

The authors study the long-time behavior of a coupled system consisting of wave and heat equations coupled through transmission conditions along a steady interface. This model is a linearized and simplified version of more sophisticated models which arise in the theory of fluid-structure interaction.
One of the main difficulties in the analysis of these models is that they are in fact free boundary problems, with the free boundary being the interface between the fluid and elastic body, and this interface evolves as time increases. In fact, very few results exist on the uniqueness and global existence of solutions because of the possible collision of the interface with exterior boundaries. The authors refer to J.-L. Vázquez and E. Zuazua [Commun. Partial Differ. Equations 28, No. 9–10, 1705–1738 (2003; Zbl 1071.74017)] for some results in this direction, concerning a one-dimensional model which couples the Burgers equation with the motion of a finite number of solid point masses.
The authors deal with a simplified model, and their main goal is to perform the asymptotic analysis of solutions as \( t \rightarrow \infty\). After linearization around the trivial solution, the interface does not move and is independent of time. The model under consideration consists of two coupled equations in two adjacent domains separated by this interface. This model couples the wave and heat equations as a prototype of more realistic models in which the system of elasticity is coupled with the Navier-Stokes or Stokes equations.
The novelty of the model consists in transmission conditions at the interface which are much more realistic, and for which the time derivative of the wave solution is coupled with the heat solution. This type of interface condition is indeed more physical in fluid-structure interaction, since both the fluid solution and the time derivative of elastic solution constitute velocity fields of motion of the fluid and deformations of the elastic body, respectively.
The main results are the following: (i) regardless of the geometric configuration, the rate of decay is never uniform, and (ii) under suitable geometric conditions smooth solutions decay polynomially.
A comparison to the results by J. Rauch, X. Zhang and E. Zuazua [J. Math. Pures Appl., IX. Sér. 84, No. 4, 407–470 (2005; Zbl 1077.35030)] is given. In particular, it is shown that for the system considered in the cited work smooth solutions decay logarithmically without any geometric restrictions.

MSC:

74H40 Long-time behavior of solutions for dynamical problems in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74F05 Thermal effects in solid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
35Q79 PDEs in connection with classical thermodynamics and heat transfer
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Ammari K., Tucsnak M. (2000). Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM J. Control Optim. 39:1160-1181 · Zbl 0983.35021 · doi:10.1137/S0363012998349315
[2] Bardos C., Lebeau G., Rauch J. (1992). Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30:1024-1065 · Zbl 0786.93009 · doi:10.1137/0330055
[3] Beirão da Veiga H. (2004). On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech. 6:21-52 · Zbl 1068.35087 · doi:10.1007/s00021-003-0082-5
[4] Blom F.J. (1998). A monolithical fluid-structure interaction algorithm applied to the piston problem. Comput. Methods Appl. Mech. Engrg. 167:369-391 · Zbl 0948.76046 · doi:10.1016/S0045-7825(98)00151-0
[5] Boulakia M. (2005). Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid. C. R. Math. Acad. Sci. Paris 340:113-118 · Zbl 1056.35037 · doi:10.1016/j.crma.2004.11.003
[6] Burq N. (1997). Contrôlabilité exacte des ondes dans des ouverts peu réguliers. Asymptot. Anal. 14:157-191 · Zbl 0892.93009
[7] Causin P., Gerbeau J.F., Nobile F. (2005). Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput. Methods Appl. Mech. Engrg. 194:4506-4527 · Zbl 1101.74027 · doi:10.1016/j.cma.2004.12.005
[8] Chambolle A., Desjardins B., Esteban M.J., Grandmont C. (2005). Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7:368-404 · Zbl 1080.74024 · doi:10.1007/s00021-004-0121-y
[9] Conca C., San Martín J., Tucsnak M. (2000). Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Comm. Partial Differential Equations. 25:1019-1042 · Zbl 0954.35135 · doi:10.1080/03605300008821540
[10] Coutand D., Shkoller S. (2005). Motion of an elastic solid inside an incompressible viscous fluid. Arch. Ration. Mech. Anal. 176:25-102 · Zbl 1064.74057 · doi:10.1007/s00205-004-0340-7
[11] Dautray, R., Lions, J.-L.: Analyse mathématique et calcul numérique pour les sciences et les techniques. Tome 3. Collection du Commissariat à l’Énergie Atomique: Série Scientifique. [Collection of the Atomic Energy Commission: Science Series], Masson, Paris, 1985, With the collaboration of M. Artola, C. Bardos, M. Cessenat, A. Kavenoky, H. Lanchon, P. Lascaux, B. Mercier, O. Pironneau, B. Scheurer and R. Sentis.
[12] Desjardins B., Esteban M.J. (2000). On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. Partial Differential Equations 25:1399-1413 · Zbl 0953.35118
[13] Desjardins B., Esteban M.J., Grandmont C., Le Tallec P. (2001). Weak solutions for a fluid-elastic structure interaction model. Rev. Mat. Complut. 14:523-538 · Zbl 1007.35055 · doi:10.5209/rev_REMA.2001.v14.n2.17030
[14] Du Q., Gunzburger M.D., Hou L.S., Lee J. (2004). Semidiscrete finite element approximations of a linear fluid-structure interaction problem. SIAM J. Numer. Anal. 42:1-29 · Zbl 1159.74343 · doi:10.1137/S0036142903408654
[15] Duyckaerts, T.: Optimal decay rates of the solutions of hyperbolic-parabolic systems coupled by an interface. Preprint, 2005
[16] Duyckaerts, T.: private communication
[17] Feireisl E. (2003). On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167:281-308 · Zbl 1090.76061 · doi:10.1007/s00205-002-0242-5
[18] Gerbeau J.F., Vidrascu M. (2003). A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. M2AN Math. Model. Numer. Anal. 37:631-647 · Zbl 1070.74047 · doi:10.1051/m2an:2003049
[19] Grandmont C., Maday Y. (2000). Existence for an unsteady fluid-structure interaction problem. M2AN Math. Model. Numer. Anal. 34:609-636 · Zbl 0969.76017 · doi:10.1051/m2an:2000159
[20] Gunzburger M., Lee H.-C., Seregin G.A. (2000). Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2:219-266 · Zbl 0970.35096 · doi:10.1007/PL00000954
[21] Heil M. (2004). An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Comput. Methods Appl. Mech. Engrg. 193:1-23 · Zbl 1137.74439 · doi:10.1016/j.cma.2003.09.006
[22] Hoffmann K.-H., Starovoitov V. N. (1999). On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9:633-648 · Zbl 0966.76016
[23] Hörmander L. (1985). The Analysis of Linear Partial Differential Operators III. Springer, Berlin · Zbl 0601.35001
[24] Howe M.S. (1998). Acoustics of Fluid-Structure Interactions. Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge · Zbl 0921.76002 · doi:10.1017/CBO9780511662898
[25] Imanuvilov, O.YU., Yamamoto, M.: Remarks on Carleman estimates and exact controllability of the Lamé system. Journées “Équations aux Dérivées Partielles” (Forges-les-Eaux, 2002), Exp. No. V, 19 pp., Univ. Nantes, Nantes, 2002
[26] Ishihara D., Yoshimura S. (2005). A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure Poisson equation. Internat J. Numer. Methods Engn. 64:167-203 · Zbl 1104.74026 · doi:10.1002/nme.1348
[27] le Tallec P., Mani S. (2000). Numerical analysis of a linearised fluid-structure interaction problem. Numer. Math. 87:317-354 · Zbl 0998.76050 · doi:10.1007/s002110000183
[28] Lebeau G. (1992). Contrôle analytique I: Estimations a priori. Duke Math. J. 68:1-30 · Zbl 0780.93053 · doi:10.1215/S0012-7094-92-06801-3
[29] Li T.T., Zheng S.M., Tan Y.J., Shen W.X. (1976). Boundary value problems with equivalued surface boundary conditions for self-adjoint elliptic differential equations (I). J. Fudan Univ. Nat. Sci. 1:61-71 (In Chinese)
[30] Lions, J.L.: Contrôlabilité Exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1: Contrôlabilité Exacte, RMA 8, Masson, Paris, 1988 · Zbl 0653.93003
[31] Lions J.L., Magenes E. (1972). Non-Homogeneous Boundary Value Problems and Applications (Vol I). Springer-Verlag, New York · Zbl 0223.35039 · doi:10.1007/978-3-642-65161-8
[32] Macià F., Zuazua E. (2002). On the lack of observability for wave equations: a Gaussian beam approach. Asymptot. Anal. 32:1-26 · Zbl 1024.35062
[33] Mathews I.C. (1986). Numerical techniques for three-dimensional steady-state fluid-structure interaction. J. Acoust. Soc. Amer. 79:1317-1325 · doi:10.1121/1.393711
[34] Morand H., Ohayon R. (1995). Fluid Structure Interaction: Applied Numerical Methods. Wiley, New York · Zbl 0834.73002
[35] Ohayon R., Felippa C., eds. (2001). Special Issue on Fluid-Structure Interactions. Comput. Methods Appl. Mech. Engrg. 190:2977-3292 · doi:10.1016/S0045-7825(00)00376-5
[36] Pazy A. (1983). Semigroups of linear operators and applications to partial differential equations. Applied Mathematical Sciences 44, Springer-Verlag, New York · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[37] Phung, K.D.: Quantification of unique continuation for the wave equation with Dirichlet boundary condition. unpublished manuscript, 2004
[38] Ralston, J.: Gaussian Beams and the Propagation of Singularities. Studies in Partial Differential Equations (Edited by W. Littman) MAA Studies in Mathematics, 23, Washington, DC, 1982, 206-248 · Zbl 0533.35062
[39] Rauch J. (1976). Qualitative behavior of dissipative wave equations on bounded domains. Arch. Ration. Mech. Anal. 62:77-85 · Zbl 0335.35062 · doi:10.1007/BF00251857
[40] Rauch J., Zhang X., Zuazua E. (2005). Polynomial decay for a hyperbolic-parabolic coupled system. J. Math. Pures Appl. 84: 407-470 · Zbl 1077.35030 · doi:10.1016/j.matpur.2004.09.006
[41] Robbiano L. (1995). Fonction de coût et contrôle des solutions des équations hyperboliques. Asymptotic Anal. 10:95-115 · Zbl 0882.35015
[42] Rogers E.H. (1964). A minimax theory for overdamped systems. Arch. Ration. Mech. Anal. 16:89-96 · Zbl 0124.07105 · doi:10.1007/BF00281333
[43] San Martín J., Starovoitov V., Tucsnak M. (2002). Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161:113-147 · Zbl 1018.76012 · doi:10.1007/s002050100172
[44] Serre D. (1987). Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Japan J. Appl. Math. 4:99-110 · Zbl 0655.76022 · doi:10.1007/BF03167757
[45] Slemrod M. (1989). Weak asymptotic decay via a “relaxed invariance principle” for a wave equation with nonlinear, nonmonotone damping. Proc. Roy. Soc. Edinburgh Sect. A 113:87-97 · Zbl 0699.35023 · doi:10.1017/S0308210500023970
[46] Stein K. et al. (2005). Fluid-structure interaction modelling of parachute soft-landing dynamics. Internat. J. Numer. Methods Fluids 47:619-631 · Zbl 1067.76063 · doi:10.1002/fld.835
[47] Tabachnikov, S.: Billiards. Panor. Synth. No. 1, 1995 · Zbl 0833.58001
[48] Takahashi T. (2003). Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8:1499-1532 · Zbl 1101.35356
[49] Takahashi T., Tucsnak M. (2004). Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6:53-77 · Zbl 1054.35061 · doi:10.1007/s00021-003-0083-4
[50] Taylor M.E. (1981). Pseudodifferential Operators. Princeton Mathematical Series34, Princeton University Press, Princeton, N.J. · Zbl 0453.47026
[51] van Loon R., Anderson P.D., de Hart J., Baaijens F.P.T. (2004). A combined fictitious domain/adaptive meshing method for fluid Cstructure interaction in heart valves. Internat. J. Numer. Methods Fluids 46:533-544 · Zbl 1060.76582 · doi:10.1002/fld.775
[52] Vázquez J.-L., Zuazua E. (2003). Large time behavior for a simplified 1D model of fluid-solid interaction. Comm. Partial Differential Equations 28:1705-1738 · Zbl 1071.74017 · doi:10.1081/PDE-120024530
[53] Xia, D., Li, S., Yan, S., Shu, W.: Theory of Real Functions and Functional Analysis Vol. 2 (Second version). Gaodeng Jiaoyu Chubanshe (Higher Education Press), Beijing, 1985 (In Chinese)
[54] Zhang X., Li F. (1998). Existence, uniqueness and limit behavior of solutions to a nonlinear boundary-value problem with equivalued surface. Nonlinear Anal. 34:525-536 · Zbl 0929.35057 · doi:10.1016/S0362-546X(97)00692-5
[55] Zhang X., Zuazua E. (2003). Control, observation and polynomial decay for a coupled heat-wave system. C. R. Acad. Sci. Paris 336:823-828 · Zbl 1029.93037 · doi:10.1016/S1631-073X(03)00204-8
[56] Ziemer, W.P.: Weakly Differentiable Functions, Sobolev Spaces and Functions of Bounded Variation. Graduate Texts in Mathematics, 120, Springer-Verlag, Berlin 1989 · Zbl 0692.46022
[57] Zuazua, E.: Controllability and Observability of Partial Differential Equations: Some Results and Open Problems. Handbook of Differential Equations: Evolutionary Differential Equations vol. 3, Elsevier Science, to appear · Zbl 1193.35234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.