×

Metrics and causality on Moyal planes. (English) Zbl 1365.58005

Martinetti, Pierre (ed.) et al., Noncommutative geometry and optimal transport. Workshop on noncommutative geometry and optimal transport, Besançon, France, November 27, 2014. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2297-4/pbk; 978-1-4704-3560-8/ebook). Contemporary Mathematics 676, 147-173 (2016).
From the paper’s abstract: Metrics structures stemming from the Connes distance promote Moyal planes to the status of quantum metric spaces. We discuss this aspect in the light of recent developments, emphasizing the role of Moyal planes as representative examples of a recently introduced notion of quantum (noncommutative) locally compact space. We move then to the framework of Lorentzian noncommutative geometry and we examine the possibility of defining a notion of causality on Moyal plane, which is somewhat controversial in the area of mathematical physics. We show the actual existence of causal relations between the elements of a particular class of pure (coherent) states on Moyal plane with related structure similar to the one of the usual Minkowski space, up to the notion of locality.
For the entire collection see [Zbl 1353.46001].

MSC:

58B34 Noncommutative geometry (à la Connes)
54E35 Metric spaces, metrizability
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
54F05 Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces

References:

[1] Connes, A., Compact metric spaces, Fredholm modules, and hyperfiniteness, Ergodic Theory Dynam. Systems, 9, 2, 207-220 (1989) · Zbl 0718.46051 · doi:10.1017/S0143385700004934
[2] Connes, Alain, Noncommutative geometry, xiv+661 pp. (1994), Academic Press, Inc., San Diego, CA · Zbl 0818.46076
[3] Kantorovi{\v{c}}, L. V.; Rubin{\v{s}}te{\u \i }n, G. {\v{S}}., On a functional space and certain extremum problems, Dokl. Akad. Nauk SSSR (N.S.), 115, 1058-1061 (1957) · Zbl 0081.11501
[4] Vasershtein, L. N., Markov processes over denumerable products of spaces describing large system of automata, Problemy Pereda\v ci Informacii. Problems of Information Transmission, 5 5, 3, 47-52 (1969) · Zbl 0273.60054
[5] R. L. Dobrushin, “Prescribing a system of random variables by conditional distributions”, Theor. Probab. Appl. 15 (1970) 458. · Zbl 0264.60037
[6] Rieffel, Marc A., Metrics on states from actions of compact groups, Doc. Math., 3, 215-229 (electronic) (1998) · Zbl 0993.46043
[7] Rieffel, Marc A., Metrics on state spaces, Doc. Math., 4, 559-600 (electronic) (1999) · Zbl 0945.46052
[8] Rieffel, Marc A., Compact quantum metric spaces. Operator algebras, quantization, and noncommutative geometry, Contemp. Math. 365, 315-330 (2004), Amer. Math. Soc., Providence, RI · Zbl 1084.46060 · doi:10.1090/conm/365/06709
[9] Rieffel, Marc A., Group \(C^*\)-algebras as compact quantum metric spaces, Doc. Math., 7, 605-651 (electronic) (2002) · Zbl 1031.46082
[10] Rieffel, Marc A., Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Mem. Amer. Math. Soc., 168, 796, 67-91 (2004) · Zbl 1043.46052 · doi:10.1090/memo/0796
[11] Latr{\'e}moli{\`“e}re, Fr{\'”e}d{\'e}ric, Approximation of quantum tori by finite quantum tori for the quantum Gromov-Hausdorff distance, J. Funct. Anal., 223, 2, 365-395 (2005) · Zbl 1088.46044 · doi:10.1016/j.jfa.2005.01.003
[12] A. Rennie, J. C. Varilly, “Reconstruction of manifolds in noncommutative geometry”, arxiv:math/0610418 (2006).
[13] Latr{\'e}moli{\`“e}re, Fr{\'”e}d{\'e}ric, Quantum locally compact metric spaces, J. Funct. Anal., 264, 1, 362-402 (2013) · Zbl 1262.46049 · doi:10.1016/j.jfa.2012.10.016
[14] For a general review see F. Latremoliere, ”A Survey of the Gromov-Hausdorff Propinquity”, arxiv: 1506.04341 (2015).
[15] Latr{\'e}moli{\`“e}re, Fr{\'”e}d{\'e}ric, Bounded-Lipschitz distances on the state space of a \(C^*\)-algebra, Taiwanese J. Math., 11, 2, 447-469 (2007) · Zbl 1129.46063
[16] Cagnache, Eric; Wallet, Jean-Christophe, Spectral distances: results for Moyal plane and noncommutative torus, SIGMA Symmetry Integrability Geom. Methods Appl., 6, Paper 026, 17 pp. (2010) · Zbl 1190.58010 · doi:10.3842/SIGMA.2010.026
[17] Cagnache, Eric; D’Andrea, Francesco; Martinetti, Pierre; Wallet, Jean-Christophe, The spectral distance in the Moyal plane, J. Geom. Phys., 61, 10, 1881-1897 (2011) · Zbl 1226.81095 · doi:10.1016/j.geomphys.2011.04.021
[18] Wallet, Jean-Christophe, Connes distance by examples: homothetic spectral metric spaces, Rev. Math. Phys., 24, 9, 1250027, 26 pp. (2012) · Zbl 1256.46040 · doi:10.1142/S0129055X12500274
[19] Franco, Nicolas; Eckstein, Micha{\l }, An algebraic formulation of causality for noncommutative geometry, Classical Quantum Gravity, 30, 13, 135007, 18 pp. (2013) · Zbl 1273.83019 · doi:10.1088/0264-9381/30/13/135007
[20] Gracia-Bond{\'{\i }}a, Jos{\'e} M.; V{\'a}rilly, Joseph C., Algebras of distributions suitable for phase-space quantum mechanics. I, J. Math. Phys., 29, 4, 869-879 (1988) · Zbl 0652.46026 · doi:10.1063/1.528200
[21] V{\'a}rilly, Joseph C.; Gracia-Bond{\'{\i }}a, Jos{\'e} M., Algebras of distributions suitable for phase-space quantum mechanics. II. Topologies on the Moyal algebra, J. Math. Phys., 29, 4, 880-887 (1988) · Zbl 0652.46027 · doi:10.1063/1.527984
[22] Gayral, V.; Gracia-Bond{\'{\i }}a, J. M.; Iochum, B.; Sch{\`“u}cker, T.; V{\'”a}rilly, J. C., Moyal planes are spectral triples, Comm. Math. Phys., 246, 3, 569-623 (2004) · Zbl 1084.58008 · doi:10.1007/s00220-004-1057-z
[23] Blackadar, B., Operator algebras, Encyclopaedia of Mathematical Sciences 122, xx+517 pp. (2006), Springer-Verlag, Berlin · Zbl 1092.46003 · doi:10.1007/3-540-28517-2
[24] Kadison, Richard V.; Ringrose, John R., Fundamentals of the theory of operator algebras. Vol. II, Pure and Applied Mathematics 100, i-xiv and 399-1074 (1986), Academic Press, Inc., Orlando, FL · Zbl 0991.46031 · doi:10.1016/S0079-8169(08)60611-X
[25] Dubois-Violette, Michel, Lectures on graded differential algebras and noncommutative geometry. Noncommutative differential geometry and its applications to physics , Shonan, 1999, Math. Phys. Stud. 23, 245-306 (2001), Kluwer Acad. Publ., Dordrecht · Zbl 1038.58004
[26] Wallet, Jean-Christophe, Derivations of the Moyal algebra and noncommutative gauge theories, SIGMA Symmetry Integrability Geom. Methods Appl., 5, Paper 013, 25 pp. (2009) · Zbl 1160.81470 · doi:10.3842/SIGMA.2009.013
[27] Cagnache, Eric; Masson, Thierry; Wallet, Jean-Christophe, Noncommutative Yang-Mills-Higgs actions from derivation-based differential calculus, J. Noncommut. Geom., 5, 1, 39-67 (2011) · Zbl 1226.81279 · doi:10.4171/JNCG/69
[28] de Goursac, Axel; Masson, Thierry; Wallet, Jean-Christophe, Noncommutative \(\epsilon \)-graded connections, J. Noncommut. Geom., 6, 2, 343-387 (2012) · Zbl 1275.58003 · doi:10.4171/JNCG/94
[29] Gayral, Victor; Wulkenhaar, Raimar, Spectral geometry of the Moyal plane with harmonic propagation, J. Noncommut. Geom., 7, 4, 939-979 (2013) · Zbl 1295.46054 · doi:10.4171/JNCG/140
[30] Grosse, Harald; Wulkenhaar, Raimar, Renormalisation of \(\phi^4\)-theory on noncommutative \({\mathbb{R}}^2\) in the matrix base, J. High Energy Phys., 12, 019, 26 pp. (electronic) pp. (2003) · Zbl 1115.81055 · doi:10.1088/1126-6708/2003/12/019
[31] Grosse, Harald; Wulkenhaar, Raimar, Renormalisation of \(\phi^4\)-theory on noncommutative \(\mathbb{R}^4\) in the matrix base, Comm. Math. Phys., 256, 2, 305-374 (2005) · Zbl 1075.82005 · doi:10.1007/s00220-004-1285-2
[32] de Goursac, Axel; Wallet, Jean-Christophe, Symmetries of noncommutative scalar field theory, J. Phys. A, 44, 5, 055401, 12 pp. (2011) · Zbl 1208.81192 · doi:10.1088/1751-8113/44/5/055401
[33] de Goursac, A.; Wallet, J.-C.; Wulkenhaar, R., Noncommutative induced gauge theory, Eur. Phys. J. C Part. Fields, 51, 4, 977-987 (2007) · Zbl 1189.81215 · doi:10.1140/epjc/s10052-007-0335-2
[34] Grosse, H.; Wohlgenannt, M., Induced gauge theory on a noncommutative space, Eur. Phys. J. C Part. Fields, 52, 2, 435-450 (2007) · Zbl 1189.81217 · doi:10.1140/epjc/s10052-007-0369-5
[35] J.-C. Wallet, “Noncommutative Induced Gauge Theories on Moyal Spaces”, J. Phys.: Conf. Ser.103 (2008) 012007.
[36] A. de Goursac, J.-C. Wallet, R. Wulkenhaar, ”On the vacuum states for noncommutative gauge theory”, Eur. Phys. J. C56 (2008) 293. · Zbl 1189.81214
[37] Doplicher, Sergio; Fredenhagen, Klaus; Roberts, John E., The quantum structure of spacetime at the Planck scale and quantum fields, Comm. Math. Phys., 172, 1, 187-220 (1995) · Zbl 0847.53051
[38] Martinetti, Pierre; Mercati, Flavio; Tomassini, Luca, Minimal length in quantum space and integrations of the line element in noncommutative geometry, Rev. Math. Phys., 24, 5, 1250010, 36 pp. (2012) · Zbl 1253.81080 · doi:10.1142/S0129055X12500109
[39] P. Martinetti, L. Tomassini, “Noncommutative geometry of the Moyal plane: translation isometries, Connes”s spectral distance between coherent states, Pythagoras equality” arXiv:1110.6164 (2011). · Zbl 1283.81092
[40] Vitale, Patrizia; Wallet, Jean-Christophe, Noncommutative field theories on \(\mathbb{R}^3_\lambda \): towards UV/IR mixing freedom, J. High Energy Phys., 4, 115, front matter + 35 pp. (2013) · Zbl 1342.81641
[41] Franco, Nicolas; Eckstein, Micha{\l }, Exploring the causal structures of almost commutative geometries, SIGMA Symmetry Integrability Geom. Methods Appl., 10, Paper 010, 23 pp. (2014) · Zbl 1291.58003 · doi:10.3842/SIGMA.2014.010
[42] Franco, Nicolas; Eckstein, Micha{\l }, Causality in noncommutative two-sheeted space-times, J. Geom. Phys., 96, 42-58 (2015) · Zbl 1327.58011 · doi:10.1016/j.geomphys.2015.05.008
[43] Balachandran, A. P.; Joseph, Anosh; Padmanabhan, Pramod, Causality and statistics on the Groenewold-Moyal plane, Found. Phys., 40, 7, 692-702 (2010) · Zbl 1197.81182 · doi:10.1007/s10701-009-9335-4
[44] Bahns, Dorothea, Local counterterms on the noncommutative Minkowski space. Rigorous quantum field theory, Progr. Math. 251, 11-26 (2007), Birkh\`“auser, Basel · Zbl 1166.81361 · doi:10.1007/978-3-7643-7434-1\_2
[45] Bogn{\'a}r, J{\'a}nos, Indefinite inner product spaces, ix+224 pp. (1974), Springer-Verlag, New York-Heidelberg · Zbl 0286.46028
[46] Strohmaier, Alexander, On noncommutative and pseudo-Riemannian geometry, J. Geom. Phys., 56, 2, 175-195 (2006) · Zbl 1086.58004 · doi:10.1016/j.geomphys.2005.01.005
[47] van den Dungen, Koen; Paschke, Mario; Rennie, Adam, Pseudo-Riemannian spectral triples and the harmonic oscillator, J. Geom. Phys., 73, 37-55 (2013) · Zbl 1285.53060 · doi:10.1016/j.geomphys.2013.04.011
[48] K. van den Dungen and A. Rennie, “Indefinite Kasparov modules and pseudo-Riemannian manifolds”, arXiv:1503.06916. · Zbl 1357.58010
[49] Franco, Nicolas, Temporal Lorentzian spectral triples, Rev. Math. Phys., 26, 8, 1430007, 23 pp. (2014) · Zbl 1305.58007 · doi:10.1142/S0129055X14300076
[50] Besnard, Fabien, A noncommutative view on topology and order, J. Geom. Phys., 59, 7, 861-875 (2009) · Zbl 1178.58003 · doi:10.1016/j.geomphys.2009.03.009
[51] N. Franco and M. Eckstein, “Noncommutative geometry, Lorentzian structures and causality”, in: M. Eckstein, M. Heller, S. Szybka (Eds.), Mathematical Structures of the Universe, Copernicus Center Press, 2014, pp. 315-340.
[52] R. Verch, “Quantum Dirac field on Moyal-Minkowski spacetime - illustrating quantum field theory over Lorentzian spectral geometry”, in: Acta Physica Polonica B Proceedings Supplement, Vol. 4, 2011, pp. 507-530.
[53] R. Verch, “Quantum Dirac field on Moyal-Minkowski spacetime - illustrating quantum field theory over Lorentzian spectral geometry”, in: Acta Physica Polonica B Proceedings Supplement, Vol. 4, 2011, pp. 507-530.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.