×

Non-commutative odd Chern numbers and topological phases of disordered chiral systems. (English) Zbl 1344.82055

Summary: An index theorem for higher Chern characters of odd Fredholm modules over crossed product algebras is proved, together with a local formula for the associated cyclic cocycle. The result generalizes the classic Noether-Gohberg-Krein index theorem, which in its simplest form states that the winding number of a complex-valued function over the circle is equal to the index of the associated Toeplitz operator. When applied to the non-commutative Brillouin zone, this generalization allows to define topological invariants for all condensed matter phases from the chiral unitary (or AIII-symmetry) class in the presence of strong disorder and magnetic fields, whenever the Fermi level lies in a region of Anderson localized spectrum.

MSC:

82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics

References:

[1] Aizenman, M.; Graf, G. M., Localization bounds for an electron gas, J. Phys. A: Math. Gen., 31, 6783-6806 (1998) · Zbl 0953.82009
[2] Aizenman, M.; Molchanov, S., Localization at large disorder and at extreme energies: an elementary derivation, Comm. Math. Phys., 157, 245-278 (1993) · Zbl 0782.60044
[3] Bellissard, J., K-theory of \(C^\ast \)-algebras in solid state physics, (Dorlas, T.; Hugenholtz, M.; Winnink, M., Lecture Notes in Phys., vol. 257 (1986), Springer-Verlag: Springer-Verlag Berlin), 99-156 · Zbl 0612.46066
[4] Bellissard, J.; van Elst, A.; Schulz-Baldes, H., The non-commutative geometry of the quantum Hall effect, J. Math. Phys., 35, 5373-5451 (1994) · Zbl 0824.46086
[5] Bourne, C., Topological states of matter and noncommutative geometry (2015), Australian National University, PhD Thesis
[6] Calderón, A. P., The analytic calculation of the index of elliptic equations, Proc. Natl. Acad. Sci. USA, 57, 1193-1196 (1967) · Zbl 0152.11402
[7] Carey, A. L.; Gayral, V.; Rennie, A.; Sukochev, F. A., Index theory for locally compact noncommutative geometries, Mem. Amer. Math. Soc. (2014) · Zbl 1314.46081
[8] Connes, A., Sur la théorie non commutative de l’intégration, (Algébres d’opérateurs. Algébres d’opérateurs, Lecture Notes in Math., vol. 725 (1978), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0412.46053
[9] Connes, A., Non-commutative differential geometry, Publ. Math. Inst. Hautes Études Sci., 62, 41-144 (1985) · Zbl 0592.46056
[10] Connes, A., Noncommutative Geometry (1994), Academic Press: Academic Press San Diego, CA · Zbl 0681.55004
[11] Connes, A.; Moscovici, H., The local index formula in noncommutative geometry, Geom. Funct. Anal. GAFA, 5, 174-243 (1995) · Zbl 0960.46048
[12] de Nittis, G.; Drabkin, M.; Schulz-Baldes, H., Localization and Chern numbers for weakly disordered BdG operators, Markov Process. Related Fields, 21, 463-482 (2015)
[13] Essin, A. M.; Moore, J. E.; Vanderbilt, D., Magnetoelectric polarizability and axion electrodynamics in crystalline insulators, Phys. Rev. Lett., 102, Article 146805 pp. (2009)
[14] Fedosov, B. V., Analytic formulas for the index of elliptic operators, Trans. Moscow Math. Soc., 30, 159-240 (1974) · Zbl 0349.58006
[15] Gohberg, I.; Krein, M., The basic propositions on defect numbers and indices of linear operators, Amer. Math. Soc. Transl., 13, 185-264 (1960) · Zbl 0089.32201
[16] Leung, B.; Prodan, E., A non-commutative formula for the isotropic magneto-electric response, J. Phys. A: Math. Theor., 46, Article 085205 pp. (2012) · Zbl 1269.82069
[17] Mondragon-Shem, I.; Song, J.; Hughes, T. L.; Prodan, E., Topological criticality in the chiral-symmetric AIII class at strong disorder, Phys. Rev. Lett., 113, Article 046802 pp. (2014)
[18] Noether, F., Über eine Klasse singulärer Integralgleichungen, Math. Ann., 82, 42-63 (1920) · JFM 47.0369.02
[19] Park, E., Complex Topological K-Theory (2008), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1147.55002
[20] Pedersen, G. K., \(C^\ast \)-Algebras and Their Automorphism Groups (1979), Academic Press: Academic Press London · Zbl 0416.46043
[21] Prodan, E., Quantum transport in disordered systems under magnetic fields: a study based on operator algebras, Appl. Math. Res. Express, 2013, 176-255 (2013) · Zbl 1318.82041
[22] Prodan, E.; Leung, B.; Bellissard, J., The non-commutative \(n\)-th Chern number \((n \geq 0)\), J. Phys. A: Math. Theor., 46, 485202 (2013) · Zbl 1290.82016
[23] Qi, X.-L.; Hughes, T. L.; Zhang, S.-C., Topological field theory of time-reversal invariant insulators, Phys. Rev. B, 78, Article 195424 pp. (2008)
[24] Rennie, A., Smoothness and locality for nonunital spectral triples, K-Theory, 28, 127-165 (2003) · Zbl 1027.46088
[25] Rordam, M.; Larsen, F.; Laustsen, N., An Introduction to K-Theory for \(C^\ast \)-Algebras (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0967.19001
[26] Ryu, S.; Schnyder, A. P.; Furusaki, A.; Ludwig, A. W.W., Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys., 12, Article 065010 pp. (2010)
[27] Schnyder, A. P.; Ryu, S.; Furusaki, A.; Ludwig, A. W.W., Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B, 78, Article 195125 pp. (2008)
[28] Song, J.; Fine, C.; Prodan, E., Effect of strong disorder on three-dimensional chiral topological insulators: phase diagrams, maps of the bulk invariant, and existence of topological extended bulk states, Phys. Rev. B, 90, Article 184201 pp. (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.