×

Symmetries of center singularities of plane vector fields. (English) Zbl 1334.37016

Nonlinear Oscil., N.Y. 13, No. 2, 196-227 (2010) and Neliniĭni Kolyvannya 13, No. 2, 177-205 (2010).
Summary: Let \( {D^2} \subset {\mathbb{R}^2} \) be a closed unit 2-disk centered at the origin \( O \in {\mathbb{R}^2} \) and let \(F\) be a smooth vector field such that \(O\) is a unique singular point of \(F\) and all other orbits of \(F\) are simple closed curves wrapping once around \(O\). Thus, topologically \(O\) is a “center” singularity. Let \( \theta :D2\backslash \left\{ O \right\} \to \left( {0, + \infty} \right) \) be the function associating with each \(z \neq O\) its period with respect to \(F\). In general, such a function cannot be even continuously defined at \(O\). Let also \( {\mathcal{D}^{+}}(F) \) be the group of diffeomorphisms of \(D^{2}\) that preserve orientation and leave invariant each orbit of \(F\). It is proved that \(\theta\) smoothly extends to all of \(D^{2}\) if and only if the 1-jet of \(F\) at \(O\) is a “rotation,” i.e., \( {j^1}F(O) = - y\frac{\partial}{{\partial x}} + x\frac{\partial}{{\partial y}} \). Then \( {\mathcal{D}^{+}}(F) \) is homotopy equivalent to a circle.

MSC:

37C10 Dynamics induced by flows and semiflows
57R25 Vector fields, frame fields in differential topology

References:

[1] J. Chavarriga, H. Giacomini, J. Giné, and J. Llibre, ”On the integrability of two-dimensional flows,” J. Different. Equat., 157, 163–182 (1999). · Zbl 0940.37005 · doi:10.1006/jdeq.1998.3621
[2] S. Maksymenko, ”Smooth shifts along trajectories of flows,” Topol. Appl., 130, 83–204 (2003). · Zbl 1014.37012 · doi:10.1016/S0166-8641(02)00363-2
[3] S. Maksymenko, Local Inverses of Shift Maps along Orbits of Flows, arXiv:0806.1502. · Zbl 1291.37026
[4] S. Maksymenko, ”Connected components of partition preserving diffeomorphisms,” Meth. Funct. Anal. Geom., 15, No. 3, 264–279 (2009). · Zbl 1199.57029
[5] S. Maksymenko, ”Reparametrizations of vector fields and their shift maps,” Proc. Inst. Math. NAS Ukraine, 6, No. 2, 489–498 (2009). · Zbl 1199.57017
[6] F. Takens, ”Normal forms for certain singularities of vector fields,” Ann. Inst. Fourier, 23, No. 2, 163–195 (1973). · Zbl 0266.34046 · doi:10.5802/aif.467
[7] G. W. Schwarz, ”Smooth functions invariant under the action of a compact Lie group,” Topology, 14, 63–68 (1975). · Zbl 0297.57015 · doi:10.1016/0040-9383(75)90036-1
[8] W. C. Huffman, ”Polynomial invariants of finite linear groups of degree two,” Can. J. Math., 32, 317–330 (1980). · Zbl 0442.20037 · doi:10.4153/CJM-1980-024-6
[9] S. Maksymenko, ”Homotopy types of stabilizers and orbits of Morse functions on surfaces,” Ann. Global Anal. Geom., 29, No. 3, 241–285 (2006). · Zbl 1099.37013 · doi:10.1007/s10455-005-9012-6
[10] V. I. Arnol’d and Yu. S. Ilyashenko, ”Ordinary differential equations,” in: VINITI Series in Contemporary Problems in Mathematics. Fundamental Trends [in Russian], Vol. 1, VINITI, Moscow (1985), pp. 7–140.
[11] H. Poincaré, On Curves Defined by Differential Equations [Russian translation], Moscow (1947).
[12] A. M. Lyapunov, A General Problem of Stability of Motion [in Russian], Gostekhteoretizdat, Moscow (1950). · Zbl 0041.32204
[13] R. Moussu, ”Symétrie et forme normale des centres et foyers dégénérés,” Ergodic Theory Dynam. Syst., 2, No. 2, 241–251 (1982). · Zbl 0509.34027 · doi:10.1017/S0143385700001553
[14] K. S. Sibirsky, Algebraic Invariants of Differential Equations and Matrices [in Russian], Kishinev (1976).
[15] K. S. Sibirsky, Introduction to the Algebraic Invariants Theory of Differential Equations [in Russian], Kishinev (1982).
[16] S. I. Maksymenko, ”Symmetries of degenerate center singularities of plane vector fields,” Nonlin. Oscillations, 12, No. 4, 507–526 (2009). · Zbl 1277.37036 · doi:10.1007/s11072-010-0092-2
[17] M. Hirsch, Differentiable Topology, Springer (1976).
[18] J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Springer (1982). · Zbl 0491.58001
[19] O. Perron, ”Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen,” Math. Z., 29, 129–160 (1928). · JFM 54.0456.04 · doi:10.1007/BF01180524
[20] O. Perron, ”Über Stabilität und asymptotisches Verhalten der Lösungen eines Systems endlicher Differenzengleichungen,” J. Reine Angew. Math., 161, 41–64 (1929). · JFM 55.0869.02
[21] O. Perron, ”Die Stabilitätsfrage bei Differentialgleichungen,” Math. Z., 32, 703–728 (1930). · JFM 56.1040.01 · doi:10.1007/BF01194662
[22] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, Springer (1977).
[23] O. Lykova, ”On the question of stability of solutions of systems of nonlinear differential equations,” Ukr. Mat. Zh., 11, No. 2, 251–255 (1959). · Zbl 0087.29702 · doi:10.1007/BF02529672
[24] A. Kelley, ”The stable, center-stable, center, center-unstable, unstable manifolds,” J. Different. Equat., 3, 546–570 (1967). · Zbl 0173.11001 · doi:10.1016/0022-0396(67)90016-2
[25] J. Carr, Applications of Centre Manifold Theory, Springer (1981). · Zbl 0464.58001
[26] S. Maksymenko, ”Hamiltonian vector fields of homogeneous polynomials on the plane, topological problems and relative questions,” Proc. Inst. Math. NAS Ukr., 3, No. 3, 269–308 (2006). · Zbl 1199.57016
[27] G. R. Belitsky, ”Smooth equivalence of germs of vector fields with a single zero eigenvalue or a pair of purely imaginary eigenvalues,” Funct. Anal. Appl., 20, No. 4, 1–8 (1985). · Zbl 0596.39003 · doi:10.1080/00036818508839554
[28] M. A. Mostow and S. Shnider, ”Joint continuity of division of smooth functions. I. Uniform Lojasiewicz estimates,” Trans. Amer. Math. Soc., 292, No. 2, 573–583 (1985). · Zbl 0603.46034
[29] N. M. dos Santos, ”Parameter rigid actions of the Heisenberg groups,” Ergodic Theory Dynam. Syst., 27, No. 6, 1719–1735 (2007). · Zbl 1127.37026
[30] S. Maksymenko, ”Jets of diffeomorphisms preserving orbits of vector fields,” Centr. Eur. J. Math., 7, No. 2, 272–298 (2009). · Zbl 1187.37028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.